Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981946351> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2981946351 abstract "Abstract Background We aimed to develop a machine learning (ML) computer score derived from stress imaging and clinical data, which indicates if the rest scan could be automatically and safely canceled in the routine stress/rest myocardial perfusion SPECT (MPS). Methods A total of 20414 stress/rest cases from the REFINE SPECT registry collected from 5 sites in 3 countries with Tc-99m-based MPS images, clinical data, and clinical follow-up were included in the study. All images were automatically processed at our Medical Center. The automatically generated myocardial contours were checked by experienced technologists. In total, 93 variables (26 clinical, 17 stress-test, and 50 stress-imaging variables) were used to build a LogitBoost model for prediction of adverse events (AE), including coronary revascularization, death, myocardial infarction, and unstable angina. 10-fold cross-validation was performed to separate test from validation data for the assessment of ML. The overall ML predictive performance was compared to quantitative (stress total perfusion deficit [TPD]) by the area under the receiver operating characteristic curves (AUC). ML cut-off (ML1) to simulate the decision of cancellation of the rest scan was set to result in the same % of normal scans as these determined by the normal clinical reader diagnosis on a 4-point scale in the whole population, or the same % of scans with visual summed stress scores (SSS) = 0 in the subpopulation with available SSS. A second ML cutoff (ML2) was established to achieve a 1% annual risk of AE. The annual risk of AE of the normal ML score was compared with normal clinical diagnosis and with the finding of SSS = 0. Results The mean follow-up interval was 4.7±1.5 years. Overall, 3542 AE were observed (3.7% annual risk). The AUC for AE was higher for ML (0.780±0.005) than for stress TPD (0.698±0.006) (p<0.001). Normal clinical diagnosis was reported in 60% cases. In 70% (14242 scans) with available segmental scores, 53% had SSS=0. ML1 and ML2 thresholds were compared with normal visual diagnosis and with SSS = 0 for AE (Figure). ML1 achieved a lower annual risk (1.5%) than normal clinical diagnosis (2.1%) or SSS = 0 (1.6% versus 2.3%) (p<0.001). The more conservative ML2 threshold with a 1% annual risk of AE resulted in a 40% canceling rate. Figure 1 Conclusion ML could be used to automatically cancel the rest MPS scan with the same proportion as using normal visual MPS reading, but with significantly lower AE rate in stress-only scans. Acknowledgement/Funding R01HL089765 from the National Heart, Lung, and Blood Institute/National Institutes of Health (NHLBI/NIH)" @default.
- W2981946351 created "2019-11-01" @default.
- W2981946351 creator A5005874677 @default.
- W2981946351 creator A5042237487 @default.
- W2981946351 creator A5042867497 @default.
- W2981946351 creator A5044226573 @default.
- W2981946351 creator A5049859233 @default.
- W2981946351 creator A5055511044 @default.
- W2981946351 creator A5062520509 @default.
- W2981946351 creator A5064692290 @default.
- W2981946351 creator A5065496916 @default.
- W2981946351 creator A5066615785 @default.
- W2981946351 creator A5070896042 @default.
- W2981946351 creator A5087501806 @default.
- W2981946351 creator A5088524577 @default.
- W2981946351 creator A5089319978 @default.
- W2981946351 date "2019-10-01" @default.
- W2981946351 modified "2023-10-01" @default.
- W2981946351 title "29Prognostic safety of automatic cancellation of rest myocardial perfusion scan by machine learning: a report from multicenter REFINE SPECT registry of new generation SPECT" @default.
- W2981946351 doi "https://doi.org/10.1093/eurheartj/ehz747.0001" @default.
- W2981946351 hasPublicationYear "2019" @default.
- W2981946351 type Work @default.
- W2981946351 sameAs 2981946351 @default.
- W2981946351 citedByCount "1" @default.
- W2981946351 countsByYear W29819463512019 @default.
- W2981946351 crossrefType "journal-article" @default.
- W2981946351 hasAuthorship W2981946351A5005874677 @default.
- W2981946351 hasAuthorship W2981946351A5042237487 @default.
- W2981946351 hasAuthorship W2981946351A5042867497 @default.
- W2981946351 hasAuthorship W2981946351A5044226573 @default.
- W2981946351 hasAuthorship W2981946351A5049859233 @default.
- W2981946351 hasAuthorship W2981946351A5055511044 @default.
- W2981946351 hasAuthorship W2981946351A5062520509 @default.
- W2981946351 hasAuthorship W2981946351A5064692290 @default.
- W2981946351 hasAuthorship W2981946351A5065496916 @default.
- W2981946351 hasAuthorship W2981946351A5066615785 @default.
- W2981946351 hasAuthorship W2981946351A5070896042 @default.
- W2981946351 hasAuthorship W2981946351A5087501806 @default.
- W2981946351 hasAuthorship W2981946351A5088524577 @default.
- W2981946351 hasAuthorship W2981946351A5089319978 @default.
- W2981946351 hasConcept C126838900 @default.
- W2981946351 hasConcept C135691158 @default.
- W2981946351 hasConcept C146957229 @default.
- W2981946351 hasConcept C164705383 @default.
- W2981946351 hasConcept C19527891 @default.
- W2981946351 hasConcept C2778405248 @default.
- W2981946351 hasConcept C2989005 @default.
- W2981946351 hasConcept C71924100 @default.
- W2981946351 hasConcept C77265313 @default.
- W2981946351 hasConceptScore W2981946351C126838900 @default.
- W2981946351 hasConceptScore W2981946351C135691158 @default.
- W2981946351 hasConceptScore W2981946351C146957229 @default.
- W2981946351 hasConceptScore W2981946351C164705383 @default.
- W2981946351 hasConceptScore W2981946351C19527891 @default.
- W2981946351 hasConceptScore W2981946351C2778405248 @default.
- W2981946351 hasConceptScore W2981946351C2989005 @default.
- W2981946351 hasConceptScore W2981946351C71924100 @default.
- W2981946351 hasConceptScore W2981946351C77265313 @default.
- W2981946351 hasLocation W29819463511 @default.
- W2981946351 hasOpenAccess W2981946351 @default.
- W2981946351 hasPrimaryLocation W29819463511 @default.
- W2981946351 hasRelatedWork W1533728986 @default.
- W2981946351 hasRelatedWork W1972149229 @default.
- W2981946351 hasRelatedWork W1990230807 @default.
- W2981946351 hasRelatedWork W1992378905 @default.
- W2981946351 hasRelatedWork W2002332210 @default.
- W2981946351 hasRelatedWork W2019337981 @default.
- W2981946351 hasRelatedWork W2033193280 @default.
- W2981946351 hasRelatedWork W2036207890 @default.
- W2981946351 hasRelatedWork W2048554045 @default.
- W2981946351 hasRelatedWork W2059394568 @default.
- W2981946351 hasRelatedWork W2113606546 @default.
- W2981946351 hasRelatedWork W2113915904 @default.
- W2981946351 hasRelatedWork W2118644955 @default.
- W2981946351 hasRelatedWork W2239385543 @default.
- W2981946351 hasRelatedWork W2398616574 @default.
- W2981946351 hasRelatedWork W2744511343 @default.
- W2981946351 hasRelatedWork W2790853770 @default.
- W2981946351 hasRelatedWork W2808935392 @default.
- W2981946351 hasRelatedWork W2997359562 @default.
- W2981946351 hasRelatedWork W3015454451 @default.
- W2981946351 isParatext "false" @default.
- W2981946351 isRetracted "false" @default.
- W2981946351 magId "2981946351" @default.
- W2981946351 workType "article" @default.