Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982011595> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2982011595 abstract "With the rapid development of deep learning, neural networks have been widely used in natural language processing tasks and achieved good results. Since convolutional neural networks can acquire high-level features that can better represent textual semantic information, convolutional neural networks (CNN) and convolutional recurrent neural networks (CRNN) are used to establish feature extraction models to extract text features. At the same time, tf-idf and word2vec methods are used to represent text features, and then feed them into SVM and Random forest classifier to classify Chinese academic papers dataset. Experimental results show that the classification results obtained by using the CNN and CRNN feature extraction model are better than using the TF-IDF and Word2vec feature extraction methods. In addition, the classification results obtained by using SVM and Random forest classifier are better than that of the original neural network." @default.
- W2982011595 created "2019-11-01" @default.
- W2982011595 creator A5008374900 @default.
- W2982011595 creator A5015527515 @default.
- W2982011595 creator A5030005269 @default.
- W2982011595 creator A5064150904 @default.
- W2982011595 date "2019-10-22" @default.
- W2982011595 modified "2023-09-23" @default.
- W2982011595 title "Chinese Text Feature Extraction and Classification Based on Deep Learning" @default.
- W2982011595 cites W2096468639 @default.
- W2982011595 cites W2101746535 @default.
- W2982011595 cites W2102605133 @default.
- W2982011595 cites W2194775991 @default.
- W2982011595 cites W2470673105 @default.
- W2982011595 cites W2500751094 @default.
- W2982011595 cites W2614110591 @default.
- W2982011595 cites W2772515592 @default.
- W2982011595 doi "https://doi.org/10.1145/3331453.3361636" @default.
- W2982011595 hasPublicationYear "2019" @default.
- W2982011595 type Work @default.
- W2982011595 sameAs 2982011595 @default.
- W2982011595 citedByCount "4" @default.
- W2982011595 countsByYear W29820115952021 @default.
- W2982011595 countsByYear W29820115952023 @default.
- W2982011595 crossrefType "proceedings-article" @default.
- W2982011595 hasAuthorship W2982011595A5008374900 @default.
- W2982011595 hasAuthorship W2982011595A5015527515 @default.
- W2982011595 hasAuthorship W2982011595A5030005269 @default.
- W2982011595 hasAuthorship W2982011595A5064150904 @default.
- W2982011595 hasConcept C108583219 @default.
- W2982011595 hasConcept C138885662 @default.
- W2982011595 hasConcept C153180895 @default.
- W2982011595 hasConcept C154945302 @default.
- W2982011595 hasConcept C185592680 @default.
- W2982011595 hasConcept C204321447 @default.
- W2982011595 hasConcept C2776401178 @default.
- W2982011595 hasConcept C41008148 @default.
- W2982011595 hasConcept C41895202 @default.
- W2982011595 hasConcept C43617362 @default.
- W2982011595 hasConcept C4725764 @default.
- W2982011595 hasConcept C52622490 @default.
- W2982011595 hasConceptScore W2982011595C108583219 @default.
- W2982011595 hasConceptScore W2982011595C138885662 @default.
- W2982011595 hasConceptScore W2982011595C153180895 @default.
- W2982011595 hasConceptScore W2982011595C154945302 @default.
- W2982011595 hasConceptScore W2982011595C185592680 @default.
- W2982011595 hasConceptScore W2982011595C204321447 @default.
- W2982011595 hasConceptScore W2982011595C2776401178 @default.
- W2982011595 hasConceptScore W2982011595C41008148 @default.
- W2982011595 hasConceptScore W2982011595C41895202 @default.
- W2982011595 hasConceptScore W2982011595C43617362 @default.
- W2982011595 hasConceptScore W2982011595C4725764 @default.
- W2982011595 hasConceptScore W2982011595C52622490 @default.
- W2982011595 hasLocation W29820115951 @default.
- W2982011595 hasOpenAccess W2982011595 @default.
- W2982011595 hasPrimaryLocation W29820115951 @default.
- W2982011595 hasRelatedWork W2016461833 @default.
- W2982011595 hasRelatedWork W2146076056 @default.
- W2982011595 hasRelatedWork W2382607599 @default.
- W2982011595 hasRelatedWork W2732542196 @default.
- W2982011595 hasRelatedWork W2773120646 @default.
- W2982011595 hasRelatedWork W2774265021 @default.
- W2982011595 hasRelatedWork W2811390910 @default.
- W2982011595 hasRelatedWork W3156786002 @default.
- W2982011595 hasRelatedWork W3186111093 @default.
- W2982011595 hasRelatedWork W3197541072 @default.
- W2982011595 isParatext "false" @default.
- W2982011595 isRetracted "false" @default.
- W2982011595 magId "2982011595" @default.
- W2982011595 workType "article" @default.