Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982024794> ?p ?o ?g. }
- W2982024794 endingPage "4035" @default.
- W2982024794 startingPage "4035" @default.
- W2982024794 abstract "The ultra-supercritical (USC) coal-fired boiler-turbine unit has been widely used in modern power plants due to its high efficiency and low emissions. Since it is a typical multivariable system with large inertia, severe nonlinearity, and strong coupling, building an accurate model of the system using traditional identification methods are almost impossible. In this paper, a deep neural network framework using stacked auto-encoders (SAEs) is presented as an effective way to model the USC unit. In the training process of SAE, maximum correntropy is chosen as the loss function, since it can effectively alleviate the influence of the outliers existing in USC unit data. The SAE model is trained and validated using the real-time measurement data generated in the USC unit, and then compared with the traditional multilayer perceptron network. The results show that SAE has superiority both in forecasting the dynamic behavior as well as eliminating the influence of outliers. Therefore, it can be applicable for the simulation analysis of a 1000 MW USC unit." @default.
- W2982024794 created "2019-11-01" @default.
- W2982024794 creator A5031191384 @default.
- W2982024794 creator A5048238798 @default.
- W2982024794 creator A5049341927 @default.
- W2982024794 creator A5075528206 @default.
- W2982024794 date "2019-10-23" @default.
- W2982024794 modified "2023-10-18" @default.
- W2982024794 title "Stacked Auto-Encoder Modeling of an Ultra-Supercritical Boiler-Turbine System" @default.
- W2982024794 cites W1967542985 @default.
- W2982024794 cites W1976802266 @default.
- W2982024794 cites W1980323303 @default.
- W2982024794 cites W1995259145 @default.
- W2982024794 cites W2005544331 @default.
- W2982024794 cites W2012896167 @default.
- W2982024794 cites W2015755712 @default.
- W2982024794 cites W2028195471 @default.
- W2982024794 cites W2034444656 @default.
- W2982024794 cites W2047451293 @default.
- W2982024794 cites W2047618161 @default.
- W2982024794 cites W2067996109 @default.
- W2982024794 cites W2076063813 @default.
- W2982024794 cites W2079063314 @default.
- W2982024794 cites W2100495367 @default.
- W2982024794 cites W2103028864 @default.
- W2982024794 cites W2119337039 @default.
- W2982024794 cites W2135160607 @default.
- W2982024794 cites W2175040789 @default.
- W2982024794 cites W2187007819 @default.
- W2982024794 cites W2271419434 @default.
- W2982024794 cites W2324044936 @default.
- W2982024794 cites W2471117961 @default.
- W2982024794 cites W2552464054 @default.
- W2982024794 cites W2564753706 @default.
- W2982024794 cites W2565162553 @default.
- W2982024794 cites W2591350782 @default.
- W2982024794 cites W2737654582 @default.
- W2982024794 cites W2739014451 @default.
- W2982024794 cites W2789236768 @default.
- W2982024794 cites W2792629212 @default.
- W2982024794 cites W2793556881 @default.
- W2982024794 doi "https://doi.org/10.3390/en12214035" @default.
- W2982024794 hasPublicationYear "2019" @default.
- W2982024794 type Work @default.
- W2982024794 sameAs 2982024794 @default.
- W2982024794 citedByCount "9" @default.
- W2982024794 countsByYear W29820247942020 @default.
- W2982024794 countsByYear W29820247942021 @default.
- W2982024794 countsByYear W29820247942022 @default.
- W2982024794 countsByYear W29820247942023 @default.
- W2982024794 crossrefType "journal-article" @default.
- W2982024794 hasAuthorship W2982024794A5031191384 @default.
- W2982024794 hasAuthorship W2982024794A5048238798 @default.
- W2982024794 hasAuthorship W2982024794A5049341927 @default.
- W2982024794 hasAuthorship W2982024794A5075528206 @default.
- W2982024794 hasBestOaLocation W29820247941 @default.
- W2982024794 hasConcept C101738243 @default.
- W2982024794 hasConcept C117312493 @default.
- W2982024794 hasConcept C118419359 @default.
- W2982024794 hasConcept C127413603 @default.
- W2982024794 hasConcept C133731056 @default.
- W2982024794 hasConcept C154945302 @default.
- W2982024794 hasConcept C178790620 @default.
- W2982024794 hasConcept C185592680 @default.
- W2982024794 hasConcept C21880701 @default.
- W2982024794 hasConcept C2778449969 @default.
- W2982024794 hasConcept C2780013297 @default.
- W2982024794 hasConcept C41008148 @default.
- W2982024794 hasConcept C50644808 @default.
- W2982024794 hasConcept C548081761 @default.
- W2982024794 hasConcept C78519656 @default.
- W2982024794 hasConcept C79337645 @default.
- W2982024794 hasConceptScore W2982024794C101738243 @default.
- W2982024794 hasConceptScore W2982024794C117312493 @default.
- W2982024794 hasConceptScore W2982024794C118419359 @default.
- W2982024794 hasConceptScore W2982024794C127413603 @default.
- W2982024794 hasConceptScore W2982024794C133731056 @default.
- W2982024794 hasConceptScore W2982024794C154945302 @default.
- W2982024794 hasConceptScore W2982024794C178790620 @default.
- W2982024794 hasConceptScore W2982024794C185592680 @default.
- W2982024794 hasConceptScore W2982024794C21880701 @default.
- W2982024794 hasConceptScore W2982024794C2778449969 @default.
- W2982024794 hasConceptScore W2982024794C2780013297 @default.
- W2982024794 hasConceptScore W2982024794C41008148 @default.
- W2982024794 hasConceptScore W2982024794C50644808 @default.
- W2982024794 hasConceptScore W2982024794C548081761 @default.
- W2982024794 hasConceptScore W2982024794C78519656 @default.
- W2982024794 hasConceptScore W2982024794C79337645 @default.
- W2982024794 hasFunder F4320335595 @default.
- W2982024794 hasFunder F4320335880 @default.
- W2982024794 hasIssue "21" @default.
- W2982024794 hasLocation W29820247941 @default.
- W2982024794 hasLocation W29820247942 @default.
- W2982024794 hasLocation W29820247943 @default.
- W2982024794 hasOpenAccess W2982024794 @default.
- W2982024794 hasPrimaryLocation W29820247941 @default.
- W2982024794 hasRelatedWork W2349282630 @default.
- W2982024794 hasRelatedWork W2358995194 @default.