Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982070178> ?p ?o ?g. }
- W2982070178 endingPage "102" @default.
- W2982070178 startingPage "94" @default.
- W2982070178 abstract "Road deaths, injuries and property damage place a huge burden on the economy of most nations. Wyoming has a high crash rate on mountain passes. The crash rates observed in the state is as a result of many factors mainly related to the challenging mountainous terrain in the state, which places extra burden on drivers in terms of requiring higher levels of alertness and driving skill. This study was conducted to investigate factors leading to crashes on Wyoming downgrades, with a focus on geometric variables. Traditionally, crash frequency analysis is conducted using count models such as Poisson or negative binomial models. However, factors that affect crash frequency are known to vary across observations. The use of a methodology that fails to take into account heterogeneity in observed and unobserved effects relating to roadway characteristics can lead to biased and inconsistent estimates. Inferences made from such parameter estimates may be misleading. This study employed the random-parameters negative binomial regression models to evaluate the impact of geometric variables on crash frequency. Five separate models were estimated for total, fatal/injury, property damage only (PDO), truck, and non-truck crash frequencies. Several geometric and traffic variables were found to influence the frequency of crashes on downgrades. These included segment length, vertical grade, shoulder width, lane width, presence of downgrade warning sign, vertical curve length, presence of a passing lane, percentage of trucks, number of lanes and AADT. The results suggest that segment length, lane width, presence of a passing lane, presence of a downgrade warning sign, vertical grade, and percentage of trucks are best modeled as random parameters. The findings of this study will provide transportation agencies with a better understanding of the impact of geometric variables on downgrade crashes." @default.
- W2982070178 created "2019-11-01" @default.
- W2982070178 creator A5006116993 @default.
- W2982070178 creator A5007454221 @default.
- W2982070178 creator A5084401135 @default.
- W2982070178 creator A5090517787 @default.
- W2982070178 date "2020-07-01" @default.
- W2982070178 modified "2023-10-16" @default.
- W2982070178 title "Predicting downgrade crash frequency with the random-parameters negative binomial model: Insights into the impacts of geometric variables on downgrade crashes in Wyoming" @default.
- W2982070178 cites W1894717885 @default.
- W2982070178 cites W1950018093 @default.
- W2982070178 cites W1980399291 @default.
- W2982070178 cites W1980888841 @default.
- W2982070178 cites W1984689476 @default.
- W2982070178 cites W1999375707 @default.
- W2982070178 cites W2008909284 @default.
- W2982070178 cites W2017001763 @default.
- W2982070178 cites W2017927372 @default.
- W2982070178 cites W2023131190 @default.
- W2982070178 cites W2023254480 @default.
- W2982070178 cites W2031539284 @default.
- W2982070178 cites W2036223982 @default.
- W2982070178 cites W2036619968 @default.
- W2982070178 cites W2037048038 @default.
- W2982070178 cites W2042741039 @default.
- W2982070178 cites W2051596469 @default.
- W2982070178 cites W2051969679 @default.
- W2982070178 cites W2054217578 @default.
- W2982070178 cites W2054427889 @default.
- W2982070178 cites W2074669159 @default.
- W2982070178 cites W2076261376 @default.
- W2982070178 cites W2077345107 @default.
- W2982070178 cites W2085198875 @default.
- W2982070178 cites W2088341448 @default.
- W2982070178 cites W2106220766 @default.
- W2982070178 cites W2161850932 @default.
- W2982070178 cites W2167832071 @default.
- W2982070178 cites W2343811890 @default.
- W2982070178 cites W2462501661 @default.
- W2982070178 cites W2509019102 @default.
- W2982070178 cites W2525050767 @default.
- W2982070178 cites W2603649984 @default.
- W2982070178 cites W2614954172 @default.
- W2982070178 cites W2788535460 @default.
- W2982070178 cites W2790297009 @default.
- W2982070178 cites W2790921206 @default.
- W2982070178 cites W2899423609 @default.
- W2982070178 cites W2901672822 @default.
- W2982070178 cites W2904191813 @default.
- W2982070178 cites W2914282929 @default.
- W2982070178 cites W2924409995 @default.
- W2982070178 cites W2943827903 @default.
- W2982070178 cites W2944414907 @default.
- W2982070178 cites W624140537 @default.
- W2982070178 cites W749141431 @default.
- W2982070178 doi "https://doi.org/10.1016/j.iatssr.2019.09.002" @default.
- W2982070178 hasPublicationYear "2020" @default.
- W2982070178 type Work @default.
- W2982070178 sameAs 2982070178 @default.
- W2982070178 citedByCount "8" @default.
- W2982070178 countsByYear W29820701782021 @default.
- W2982070178 countsByYear W29820701782022 @default.
- W2982070178 countsByYear W29820701782023 @default.
- W2982070178 crossrefType "journal-article" @default.
- W2982070178 hasAuthorship W2982070178A5006116993 @default.
- W2982070178 hasAuthorship W2982070178A5007454221 @default.
- W2982070178 hasAuthorship W2982070178A5084401135 @default.
- W2982070178 hasAuthorship W2982070178A5090517787 @default.
- W2982070178 hasBestOaLocation W29820701781 @default.
- W2982070178 hasConcept C100906024 @default.
- W2982070178 hasConcept C105795698 @default.
- W2982070178 hasConcept C127413603 @default.
- W2982070178 hasConcept C144024400 @default.
- W2982070178 hasConcept C146978453 @default.
- W2982070178 hasConcept C149782125 @default.
- W2982070178 hasConcept C149923435 @default.
- W2982070178 hasConcept C183469790 @default.
- W2982070178 hasConcept C199335787 @default.
- W2982070178 hasConcept C199360897 @default.
- W2982070178 hasConcept C2779628075 @default.
- W2982070178 hasConcept C2908647359 @default.
- W2982070178 hasConcept C33923547 @default.
- W2982070178 hasConcept C38652104 @default.
- W2982070178 hasConcept C39432304 @default.
- W2982070178 hasConcept C41008148 @default.
- W2982070178 hasConcept C52121051 @default.
- W2982070178 hasConcept C73269764 @default.
- W2982070178 hasConceptScore W2982070178C100906024 @default.
- W2982070178 hasConceptScore W2982070178C105795698 @default.
- W2982070178 hasConceptScore W2982070178C127413603 @default.
- W2982070178 hasConceptScore W2982070178C144024400 @default.
- W2982070178 hasConceptScore W2982070178C146978453 @default.
- W2982070178 hasConceptScore W2982070178C149782125 @default.
- W2982070178 hasConceptScore W2982070178C149923435 @default.
- W2982070178 hasConceptScore W2982070178C183469790 @default.
- W2982070178 hasConceptScore W2982070178C199335787 @default.
- W2982070178 hasConceptScore W2982070178C199360897 @default.
- W2982070178 hasConceptScore W2982070178C2779628075 @default.