Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982092517> ?p ?o ?g. }
- W2982092517 endingPage "235013" @default.
- W2982092517 startingPage "235013" @default.
- W2982092517 abstract "The purpose of this study was to develop a computer-aided diagnosis (CAD) system for the classification of malignant and benign masses in the breast using ultrasonography based on a convolutional neural network (CNN), a state-of-the-art deep learning technique. We explored the regions for the correct classification by generating a heat map that presented the important regions used by the CNN for human malignancy/benign classification. Clinical data was obtained from a large-scale clinical trial previously conducted by the Japan Association of Breast and Thyroid Sonology. Images of 1536 breast masses (897 malignant and 639 benign) confirmed by pathological examinations were collected, with each breast mass captured from various angles using an ultrasound (US) imaging probe. We constructed an ensemble network by combining two CNN models (VGG19 and ResNet152) fine-tuned on balanced training data with augmentation and used the mass-level classification method to enable the CNN to classify a given mass using all views. For an independent test set consisting of 154 masses (77 malignant and 77 benign), our network showed outstanding classification performance with a sensitivity of 90.9% (95% confidence interval 84.5–97.3), a specificity of 87.0% (79.5–94.5), and area under the curve (AUC) of 0.951 (0.916–0.987) compared to that of the two CNN models. In addition, our study indicated that the breast masses themselves were not detected by the CNN as important regions for correct mass classification. Collectively, this CNN-based CAD system is expected to assist doctors by improving the diagnosis of breast cancer in clinical practice." @default.
- W2982092517 created "2019-11-01" @default.
- W2982092517 creator A5027687722 @default.
- W2982092517 creator A5059137308 @default.
- W2982092517 creator A5062682309 @default.
- W2982092517 creator A5071947905 @default.
- W2982092517 creator A5078269634 @default.
- W2982092517 date "2019-12-05" @default.
- W2982092517 modified "2023-10-03" @default.
- W2982092517 title "Computer-aided diagnosis system for breast ultrasound images using deep learning" @default.
- W2982092517 cites W1968865204 @default.
- W2982092517 cites W1974474952 @default.
- W2982092517 cites W1982165114 @default.
- W2982092517 cites W1988819287 @default.
- W2982092517 cites W1989883122 @default.
- W2982092517 cites W1993584845 @default.
- W2982092517 cites W2055385925 @default.
- W2982092517 cites W2108598243 @default.
- W2982092517 cites W2119249988 @default.
- W2982092517 cites W2133911584 @default.
- W2982092517 cites W2133923351 @default.
- W2982092517 cites W2137040237 @default.
- W2982092517 cites W2145205109 @default.
- W2982092517 cites W2149988868 @default.
- W2982092517 cites W2157825442 @default.
- W2982092517 cites W2194775991 @default.
- W2982092517 cites W2419597230 @default.
- W2982092517 cites W2518674481 @default.
- W2982092517 cites W2522692516 @default.
- W2982092517 cites W2557738935 @default.
- W2982092517 cites W2572512422 @default.
- W2982092517 cites W2581082771 @default.
- W2982092517 cites W2588559096 @default.
- W2982092517 cites W2610332124 @default.
- W2982092517 cites W2731899572 @default.
- W2982092517 cites W2739737978 @default.
- W2982092517 cites W2740028789 @default.
- W2982092517 cites W2765095566 @default.
- W2982092517 cites W2809348156 @default.
- W2982092517 cites W2906785117 @default.
- W2982092517 cites W2922358453 @default.
- W2982092517 cites W2939142770 @default.
- W2982092517 cites W2944214846 @default.
- W2982092517 doi "https://doi.org/10.1088/1361-6560/ab5093" @default.
- W2982092517 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31645021" @default.
- W2982092517 hasPublicationYear "2019" @default.
- W2982092517 type Work @default.
- W2982092517 sameAs 2982092517 @default.
- W2982092517 citedByCount "74" @default.
- W2982092517 countsByYear W29820925172020 @default.
- W2982092517 countsByYear W29820925172021 @default.
- W2982092517 countsByYear W29820925172022 @default.
- W2982092517 countsByYear W29820925172023 @default.
- W2982092517 crossrefType "journal-article" @default.
- W2982092517 hasAuthorship W2982092517A5027687722 @default.
- W2982092517 hasAuthorship W2982092517A5059137308 @default.
- W2982092517 hasAuthorship W2982092517A5062682309 @default.
- W2982092517 hasAuthorship W2982092517A5071947905 @default.
- W2982092517 hasAuthorship W2982092517A5078269634 @default.
- W2982092517 hasConcept C108583219 @default.
- W2982092517 hasConcept C121608353 @default.
- W2982092517 hasConcept C126322002 @default.
- W2982092517 hasConcept C126838900 @default.
- W2982092517 hasConcept C127413603 @default.
- W2982092517 hasConcept C142724271 @default.
- W2982092517 hasConcept C143753070 @default.
- W2982092517 hasConcept C153180895 @default.
- W2982092517 hasConcept C154945302 @default.
- W2982092517 hasConcept C169903167 @default.
- W2982092517 hasConcept C194789388 @default.
- W2982092517 hasConcept C199639397 @default.
- W2982092517 hasConcept C2777423100 @default.
- W2982092517 hasConcept C2777432617 @default.
- W2982092517 hasConcept C2779098232 @default.
- W2982092517 hasConcept C2779399171 @default.
- W2982092517 hasConcept C2779549770 @default.
- W2982092517 hasConcept C2780472235 @default.
- W2982092517 hasConcept C41008148 @default.
- W2982092517 hasConcept C50644808 @default.
- W2982092517 hasConcept C530470458 @default.
- W2982092517 hasConcept C71924100 @default.
- W2982092517 hasConcept C81363708 @default.
- W2982092517 hasConceptScore W2982092517C108583219 @default.
- W2982092517 hasConceptScore W2982092517C121608353 @default.
- W2982092517 hasConceptScore W2982092517C126322002 @default.
- W2982092517 hasConceptScore W2982092517C126838900 @default.
- W2982092517 hasConceptScore W2982092517C127413603 @default.
- W2982092517 hasConceptScore W2982092517C142724271 @default.
- W2982092517 hasConceptScore W2982092517C143753070 @default.
- W2982092517 hasConceptScore W2982092517C153180895 @default.
- W2982092517 hasConceptScore W2982092517C154945302 @default.
- W2982092517 hasConceptScore W2982092517C169903167 @default.
- W2982092517 hasConceptScore W2982092517C194789388 @default.
- W2982092517 hasConceptScore W2982092517C199639397 @default.
- W2982092517 hasConceptScore W2982092517C2777423100 @default.
- W2982092517 hasConceptScore W2982092517C2777432617 @default.
- W2982092517 hasConceptScore W2982092517C2779098232 @default.
- W2982092517 hasConceptScore W2982092517C2779399171 @default.