Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982093611> ?p ?o ?g. }
- W2982093611 endingPage "102030" @default.
- W2982093611 startingPage "102030" @default.
- W2982093611 abstract "Sleep problems is the most common side effect of methylphenidate (MPH) treatment in ADHD youth and carry potential to negatively impact long-term self-regulatory functioning. This study aimed to examine whether applying machine learning approaches to pre-treatment demographic, clinical questionnaire, environmental, neuropsychological, genetic, and neuroimaging features can predict sleep side effects following MPH administration. The present study included 83 ADHD subjects as a training dataset. The participants were enrolled in an 8-week, open-label trial of MPH. The Barkley Stimulant Side Effects Rating Scale was used to determine the presence/absence of sleep problems at the 2nd week of treatment. Prediction of sleep side effects were performed with step-wise addition of variables measured at baseline: demographics (age, gender, IQ, height/weight) and clinical variables (ADHD Rating Scale-IV (ADHD-RS) and Disruptive Behavior Disorder rating scale) at stage 1, neuropsychological test (continuous performance test (CPT), Stroop color word test) and genetic/environmental variables (dopamine and norepinephrine receptor gene (DAT1, DRD4, ADRA2A, and SLC6A2) polymorphisms, blood lead, and urine cotinine level) at stage 2, and structural connectivities of frontostriatal circuits at stage 3. Three different machine learning algorithms ((Logistic Ridge Regression (LR), support vector machine (SVM), J48) were used for data analysis. Robustness of classifier model was validated in the independent dataset of 36 ADHD subjects. Classification accuracy of LR was 95.5% (area under receiver operating characteristic curve (AUC) 0.99), followed by SVM (91.0%, AUC 0.85) and J48 (90.0%, AUC 0.87) at stage 3 for predicting sleep problems. The inattention symptoms of ADHD-RS, CPT response time variability, the DAT1, ADRA2A DraI, and SLC6A2 A-3081T polymorphisms, and the structural connectivities between frontal and striatal brain regions were identified as the most differentiating subset of features. Validation analysis achieved accuracy of 86.1% (AUC 0.92) at stage 3 with J48. Our results provide preliminary support to the combination of multimodal classifier, in particular, neuroimaging features, as an informative method that can assist in predicting MPH side effects in ADHD." @default.
- W2982093611 created "2019-11-01" @default.
- W2982093611 creator A5004973652 @default.
- W2982093611 creator A5017759536 @default.
- W2982093611 creator A5031170774 @default.
- W2982093611 creator A5048085375 @default.
- W2982093611 creator A5051015778 @default.
- W2982093611 creator A5088471270 @default.
- W2982093611 creator A5090733830 @default.
- W2982093611 creator A5091503640 @default.
- W2982093611 date "2020-01-01" @default.
- W2982093611 modified "2023-10-02" @default.
- W2982093611 title "Prediction of sleep side effects following methylphenidate treatment in ADHD youth" @default.
- W2982093611 cites W1018486063 @default.
- W2982093611 cites W1495850955 @default.
- W2982093611 cites W1538619854 @default.
- W2982093611 cites W1833977909 @default.
- W2982093611 cites W1840838328 @default.
- W2982093611 cites W1934671287 @default.
- W2982093611 cites W1969959732 @default.
- W2982093611 cites W1970147070 @default.
- W2982093611 cites W1973503703 @default.
- W2982093611 cites W1983302342 @default.
- W2982093611 cites W1984551285 @default.
- W2982093611 cites W1990746659 @default.
- W2982093611 cites W1993014767 @default.
- W2982093611 cites W1995973145 @default.
- W2982093611 cites W2001192986 @default.
- W2982093611 cites W2006058627 @default.
- W2982093611 cites W2011083427 @default.
- W2982093611 cites W2013382644 @default.
- W2982093611 cites W2013974594 @default.
- W2982093611 cites W2015928143 @default.
- W2982093611 cites W2017337590 @default.
- W2982093611 cites W2021126793 @default.
- W2982093611 cites W2022934689 @default.
- W2982093611 cites W2023220345 @default.
- W2982093611 cites W2030136167 @default.
- W2982093611 cites W2030534188 @default.
- W2982093611 cites W2032055170 @default.
- W2982093611 cites W2046668977 @default.
- W2982093611 cites W2049531788 @default.
- W2982093611 cites W2054458317 @default.
- W2982093611 cites W2056769976 @default.
- W2982093611 cites W2057849818 @default.
- W2982093611 cites W2058046532 @default.
- W2982093611 cites W2058779102 @default.
- W2982093611 cites W2062611449 @default.
- W2982093611 cites W2063975882 @default.
- W2982093611 cites W2070088321 @default.
- W2982093611 cites W2077465062 @default.
- W2982093611 cites W2082418672 @default.
- W2982093611 cites W2084986023 @default.
- W2982093611 cites W2086869244 @default.
- W2982093611 cites W2089459114 @default.
- W2982093611 cites W2091027442 @default.
- W2982093611 cites W2091646494 @default.
- W2982093611 cites W2094097475 @default.
- W2982093611 cites W2098677721 @default.
- W2982093611 cites W2100537310 @default.
- W2982093611 cites W2102695881 @default.
- W2982093611 cites W2103811520 @default.
- W2982093611 cites W2108571276 @default.
- W2982093611 cites W2117744335 @default.
- W2982093611 cites W2120237358 @default.
- W2982093611 cites W2121586074 @default.
- W2982093611 cites W2126838454 @default.
- W2982093611 cites W2133062189 @default.
- W2982093611 cites W2133323742 @default.
- W2982093611 cites W2133990480 @default.
- W2982093611 cites W2138613917 @default.
- W2982093611 cites W2147055598 @default.
- W2982093611 cites W2151040995 @default.
- W2982093611 cites W2153600210 @default.
- W2982093611 cites W2156280031 @default.
- W2982093611 cites W2156372649 @default.
- W2982093611 cites W2158418624 @default.
- W2982093611 cites W2168488922 @default.
- W2982093611 cites W2238316764 @default.
- W2982093611 cites W2886298463 @default.
- W2982093611 cites W4211216202 @default.
- W2982093611 cites W4297851201 @default.
- W2982093611 cites W4320288074 @default.
- W2982093611 doi "https://doi.org/10.1016/j.nicl.2019.102030" @default.
- W2982093611 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7229354" @default.
- W2982093611 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31711956" @default.
- W2982093611 hasPublicationYear "2020" @default.
- W2982093611 type Work @default.
- W2982093611 sameAs 2982093611 @default.
- W2982093611 citedByCount "15" @default.
- W2982093611 countsByYear W29820936112020 @default.
- W2982093611 countsByYear W29820936112021 @default.
- W2982093611 countsByYear W29820936112022 @default.
- W2982093611 countsByYear W29820936112023 @default.
- W2982093611 crossrefType "journal-article" @default.
- W2982093611 hasAuthorship W2982093611A5004973652 @default.
- W2982093611 hasAuthorship W2982093611A5017759536 @default.
- W2982093611 hasAuthorship W2982093611A5031170774 @default.