Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982151839> ?p ?o ?g. }
- W2982151839 abstract "Abstract Species records from volunteers are a vast and valuable source of information on biodiversity for a wide range of taxonomic groups. Although these citizen science data are opportunistic and unstructured, occupancy analysis can be used to quantify trends in distribution. However, occupancy analysis of unstructured data can be resource-intensive and requires substantial expertise. It is valuable to have simple ‘rules of thumb’ to efficiently assess the suitability of a dataset for occupancy analysis prior to analysis. Our analysis was possible due to the production of trends, from our Bayesian occupancy analysis, for 10 967 species from 34 multi-species recording schemes in Great Britain. These schemes had an average of 500 visits to sites per year, and an average of 20% of visited sites received a revisit in a year. Occupancy trend outputs varied in their precision and we used expert elicitation on a subset of outputs to determine a precision threshold above which trends were suitable for further consideration. We then used classification trees with seven metrics to define simple rules explaining when the data would result in outputs that met the precision threshold. We found that the suitability of a species’ data was best described by (i) the number of records of the focal species in the 10% best-recorded years, and (ii) the proportion of recording visits for that taxonomic group with non-detections of the focal species. Surprisingly few data were required to be predicted to meet the precision threshold. Specifically, for 98% confidence that our Bayesian occupancy models would produce outputs meeting the precision threshold, there needed to be ≥29 records of the focal species in the 10% best-recorded years (equivalent to an average of 12.5 records per year in our dataset), although only ≥10 records (equivalent to 4.5 records per year) were required for species recorded in less than 1 in 25 visits. We applied these rules to regional species data for Great Britain. Data from 32% of the species:region combinations met the precision threshold with 80% confidence, and 14% with 98% confidence. There was great variation between taxonomic groups (e.g. butterflies, moths and dragonflies were well recorded) and region (e.g. south-east England was best recorded). These simple criteria provide no indication of the accuracy or representativeness of the trend outputs: this is vital, but needs to be assessed individually. However our criteria do provide a rapid, quantitative assessment of the predicted suitability of existing data for occupancy analysis and could be used to inform the design and implementation of multi-species citizen science recording projects elsewhere in the world." @default.
- W2982151839 created "2019-11-01" @default.
- W2982151839 creator A5004923550 @default.
- W2982151839 creator A5010886313 @default.
- W2982151839 creator A5021508862 @default.
- W2982151839 creator A5060795934 @default.
- W2982151839 creator A5070178052 @default.
- W2982151839 date "2019-10-22" @default.
- W2982151839 modified "2023-09-24" @default.
- W2982151839 title "Rapid assessment of the suitability of multi-species citizen science datasets for occupancy trend analysis" @default.
- W2982151839 cites W1144607668 @default.
- W2982151839 cites W1562192608 @default.
- W2982151839 cites W1575393310 @default.
- W2982151839 cites W1629008389 @default.
- W2982151839 cites W1824494846 @default.
- W2982151839 cites W1943176044 @default.
- W2982151839 cites W1975166684 @default.
- W2982151839 cites W1979274632 @default.
- W2982151839 cites W1984347929 @default.
- W2982151839 cites W1985354534 @default.
- W2982151839 cites W2023101454 @default.
- W2982151839 cites W2045451950 @default.
- W2982151839 cites W2093393699 @default.
- W2982151839 cites W2095854733 @default.
- W2982151839 cites W2098827594 @default.
- W2982151839 cites W2100135944 @default.
- W2982151839 cites W2108255332 @default.
- W2982151839 cites W2110323847 @default.
- W2982151839 cites W2116665868 @default.
- W2982151839 cites W2122067459 @default.
- W2982151839 cites W2122925767 @default.
- W2982151839 cites W2148452534 @default.
- W2982151839 cites W2148534890 @default.
- W2982151839 cites W2161062919 @default.
- W2982151839 cites W2170121306 @default.
- W2982151839 cites W2288804769 @default.
- W2982151839 cites W2464745095 @default.
- W2982151839 cites W2465824980 @default.
- W2982151839 cites W2548118086 @default.
- W2982151839 cites W2604357856 @default.
- W2982151839 cites W2803734763 @default.
- W2982151839 cites W2811347223 @default.
- W2982151839 cites W2895127238 @default.
- W2982151839 cites W2913439571 @default.
- W2982151839 cites W2922733861 @default.
- W2982151839 cites W2923362954 @default.
- W2982151839 cites W2925573815 @default.
- W2982151839 cites W2935776529 @default.
- W2982151839 cites W2940588990 @default.
- W2982151839 cites W2948861536 @default.
- W2982151839 cites W795326418 @default.
- W2982151839 doi "https://doi.org/10.1101/813626" @default.
- W2982151839 hasPublicationYear "2019" @default.
- W2982151839 type Work @default.
- W2982151839 sameAs 2982151839 @default.
- W2982151839 citedByCount "5" @default.
- W2982151839 countsByYear W29821518392019 @default.
- W2982151839 countsByYear W29821518392021 @default.
- W2982151839 countsByYear W29821518392022 @default.
- W2982151839 countsByYear W29821518392023 @default.
- W2982151839 crossrefType "posted-content" @default.
- W2982151839 hasAuthorship W2982151839A5004923550 @default.
- W2982151839 hasAuthorship W2982151839A5010886313 @default.
- W2982151839 hasAuthorship W2982151839A5021508862 @default.
- W2982151839 hasAuthorship W2982151839A5060795934 @default.
- W2982151839 hasAuthorship W2982151839A5070178052 @default.
- W2982151839 hasBestOaLocation W29821518391 @default.
- W2982151839 hasConcept C105795698 @default.
- W2982151839 hasConcept C107673813 @default.
- W2982151839 hasConcept C11413529 @default.
- W2982151839 hasConcept C124101348 @default.
- W2982151839 hasConcept C127413603 @default.
- W2982151839 hasConcept C130217890 @default.
- W2982151839 hasConcept C146978453 @default.
- W2982151839 hasConcept C154945302 @default.
- W2982151839 hasConcept C160331591 @default.
- W2982151839 hasConcept C18903297 @default.
- W2982151839 hasConcept C197352329 @default.
- W2982151839 hasConcept C204323151 @default.
- W2982151839 hasConcept C205649164 @default.
- W2982151839 hasConcept C206345919 @default.
- W2982151839 hasConcept C31258907 @default.
- W2982151839 hasConcept C33923547 @default.
- W2982151839 hasConcept C41008148 @default.
- W2982151839 hasConcept C59822182 @default.
- W2982151839 hasConcept C72161134 @default.
- W2982151839 hasConcept C86803240 @default.
- W2982151839 hasConcept C89246107 @default.
- W2982151839 hasConceptScore W2982151839C105795698 @default.
- W2982151839 hasConceptScore W2982151839C107673813 @default.
- W2982151839 hasConceptScore W2982151839C11413529 @default.
- W2982151839 hasConceptScore W2982151839C124101348 @default.
- W2982151839 hasConceptScore W2982151839C127413603 @default.
- W2982151839 hasConceptScore W2982151839C130217890 @default.
- W2982151839 hasConceptScore W2982151839C146978453 @default.
- W2982151839 hasConceptScore W2982151839C154945302 @default.
- W2982151839 hasConceptScore W2982151839C160331591 @default.
- W2982151839 hasConceptScore W2982151839C18903297 @default.
- W2982151839 hasConceptScore W2982151839C197352329 @default.
- W2982151839 hasConceptScore W2982151839C204323151 @default.