Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982162017> ?p ?o ?g. }
- W2982162017 abstract "A new procedure is suggested to improve genetic algorithms for the prediction of structures of nanoparticles. The strategy focuses on managing the creation of new individuals by evaluating the efficiency of operators (o1, o2, ..., o13) in generating well-adapted offspring. This is done by increasing the creation rate of operators with better performance and decreasing that rate for the ones which poorly fulfill the task of creating favorable new generation. Additionally, several strategies (thirteen at this level of approach) from different optimization techniques were implemented on the actual genetic algorithm. Trials were performed on the general case studies of 26 and 55-atom clusters with binding energy governed by a Lennard-Jones empirical potential with all individuals being created by each of the particular thirteen operators tested. Results show that our management strategy could avoid bad operators, keeping the overall method performance with great confidence. Moreover, amongst the operators taken from the literature and tested herein, the genetic algorithm was faster when the generation of new individuals was carried out by the twist operator, even when compared to commonly used operators such as Deaven and Ho cut-and-splice crossover. Operators typically designed for basin-hopping methodology also performed well on the proposed genetic algorithm scheme." @default.
- W2982162017 created "2019-11-01" @default.
- W2982162017 creator A5029999611 @default.
- W2982162017 creator A5054503380 @default.
- W2982162017 creator A5068476976 @default.
- W2982162017 date "2019-11-05" @default.
- W2982162017 modified "2023-10-16" @default.
- W2982162017 title "A New Genetic Algorithm Approach Applied to Atomic and Molecular Cluster Studies" @default.
- W2982162017 cites W1433532214 @default.
- W2982162017 cites W1583490875 @default.
- W2982162017 cites W1647872015 @default.
- W2982162017 cites W1964857324 @default.
- W2982162017 cites W1968973216 @default.
- W2982162017 cites W1973503398 @default.
- W2982162017 cites W1975733505 @default.
- W2982162017 cites W1983903611 @default.
- W2982162017 cites W1991174715 @default.
- W2982162017 cites W1998264068 @default.
- W2982162017 cites W2003301106 @default.
- W2982162017 cites W2005944647 @default.
- W2982162017 cites W2022846310 @default.
- W2982162017 cites W2022950330 @default.
- W2982162017 cites W2025108182 @default.
- W2982162017 cites W2030143939 @default.
- W2982162017 cites W2030233468 @default.
- W2982162017 cites W2032376640 @default.
- W2982162017 cites W2032459813 @default.
- W2982162017 cites W2033263428 @default.
- W2982162017 cites W2036946924 @default.
- W2982162017 cites W2044071770 @default.
- W2982162017 cites W2054504131 @default.
- W2982162017 cites W2060478796 @default.
- W2982162017 cites W2064372248 @default.
- W2982162017 cites W2064956372 @default.
- W2982162017 cites W2069252541 @default.
- W2982162017 cites W2077927715 @default.
- W2982162017 cites W2090166291 @default.
- W2982162017 cites W2092188627 @default.
- W2982162017 cites W2129128169 @default.
- W2982162017 cites W2129301105 @default.
- W2982162017 cites W2149568574 @default.
- W2982162017 cites W2152382740 @default.
- W2982162017 cites W2165310432 @default.
- W2982162017 cites W2166739626 @default.
- W2982162017 cites W2338596499 @default.
- W2982162017 cites W2398907230 @default.
- W2982162017 cites W2430842273 @default.
- W2982162017 cites W2554369286 @default.
- W2982162017 cites W2568267126 @default.
- W2982162017 cites W2579906828 @default.
- W2982162017 cites W2601081289 @default.
- W2982162017 cites W2739620735 @default.
- W2982162017 cites W2791167534 @default.
- W2982162017 cites W2794210913 @default.
- W2982162017 cites W2832353851 @default.
- W2982162017 cites W2902085792 @default.
- W2982162017 cites W2941832084 @default.
- W2982162017 cites W2949515660 @default.
- W2982162017 cites W2950294826 @default.
- W2982162017 cites W2967738078 @default.
- W2982162017 cites W3105621768 @default.
- W2982162017 cites W4236292993 @default.
- W2982162017 cites W4240011798 @default.
- W2982162017 cites W4301173492 @default.
- W2982162017 cites W4385863610 @default.
- W2982162017 doi "https://doi.org/10.3389/fchem.2019.00707" @default.
- W2982162017 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6848380" @default.
- W2982162017 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31750290" @default.
- W2982162017 hasPublicationYear "2019" @default.
- W2982162017 type Work @default.
- W2982162017 sameAs 2982162017 @default.
- W2982162017 citedByCount "19" @default.
- W2982162017 countsByYear W29821620172020 @default.
- W2982162017 countsByYear W29821620172021 @default.
- W2982162017 countsByYear W29821620172022 @default.
- W2982162017 countsByYear W29821620172023 @default.
- W2982162017 crossrefType "journal-article" @default.
- W2982162017 hasAuthorship W2982162017A5029999611 @default.
- W2982162017 hasAuthorship W2982162017A5054503380 @default.
- W2982162017 hasAuthorship W2982162017A5068476976 @default.
- W2982162017 hasBestOaLocation W29821620171 @default.
- W2982162017 hasConcept C104317684 @default.
- W2982162017 hasConcept C11413529 @default.
- W2982162017 hasConcept C119857082 @default.
- W2982162017 hasConcept C122507166 @default.
- W2982162017 hasConcept C126255220 @default.
- W2982162017 hasConcept C127413603 @default.
- W2982162017 hasConcept C154945302 @default.
- W2982162017 hasConcept C158448853 @default.
- W2982162017 hasConcept C164866538 @default.
- W2982162017 hasConcept C17020691 @default.
- W2982162017 hasConcept C185592680 @default.
- W2982162017 hasConcept C199360897 @default.
- W2982162017 hasConcept C201995342 @default.
- W2982162017 hasConcept C2780451532 @default.
- W2982162017 hasConcept C33923547 @default.
- W2982162017 hasConcept C41008148 @default.
- W2982162017 hasConcept C55493867 @default.
- W2982162017 hasConcept C86339819 @default.
- W2982162017 hasConcept C8880873 @default.