Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982207683> ?p ?o ?g. }
- W2982207683 endingPage "17939" @default.
- W2982207683 startingPage "17927" @default.
- W2982207683 abstract "Xylem is a vascular tissue that conducts sap (water and dissolved minerals) from the roots to the rest of the plant while providing physical support and resources. Sap is conducted within dead hollow cells (called vessels in flowering plants) arranged to form long pipes. Once formed, vessels do not change their structure and last from years to millennia. Vessels’ configuration (size, abundance, and spatial pattern) constitutes a record of the plant–environment relationship, and therefore, a tool for monitoring responses at the plant and ecosystem level. This information can be extracted through quantitative anatomy; however, the effort to identify and measure hundreds of thousands of conductive cells is an inconvenience to the progress needed to have solid assessments of the anatomical–environment relationship. In this paper, we propose an automatic methodology based on convolutional neural networks to segment xylem vessels. It includes a post-processing stage based on the use of redundant information to improve the performance of the outcome and make it useful in different sample configurations. Three different neural networks were tested obtaining similar results (pixel accuracy about 90%), which indicates that the methodology can be effectively used for segmentation of xylem vessels into images with non-homogeneous variations of illumination. The development of accurate automatic tools using CNNs would reduce the entry barriers associated with quantitative xylem anatomy expanding the use of this technique by the scientific community." @default.
- W2982207683 created "2019-11-01" @default.
- W2982207683 creator A5003331030 @default.
- W2982207683 creator A5029556301 @default.
- W2982207683 creator A5031414771 @default.
- W2982207683 creator A5031700895 @default.
- W2982207683 creator A5038251959 @default.
- W2982207683 creator A5047706755 @default.
- W2982207683 creator A5047835569 @default.
- W2982207683 creator A5051230496 @default.
- W2982207683 date "2019-10-24" @default.
- W2982207683 modified "2023-10-05" @default.
- W2982207683 title "Convolutional neural networks for segmenting xylem vessels in stained cross-sectional images" @default.
- W2982207683 cites W1542265757 @default.
- W2982207683 cites W1568404538 @default.
- W2982207683 cites W1901129140 @default.
- W2982207683 cites W1963937446 @default.
- W2982207683 cites W1973856480 @default.
- W2982207683 cites W1975013850 @default.
- W2982207683 cites W1975623617 @default.
- W2982207683 cites W2005925650 @default.
- W2982207683 cites W2015269967 @default.
- W2982207683 cites W2017570160 @default.
- W2982207683 cites W2024274031 @default.
- W2982207683 cites W2025118926 @default.
- W2982207683 cites W2026533010 @default.
- W2982207683 cites W2027212610 @default.
- W2982207683 cites W2035694346 @default.
- W2982207683 cites W2036289573 @default.
- W2982207683 cites W2080745934 @default.
- W2982207683 cites W2089189973 @default.
- W2982207683 cites W2114977592 @default.
- W2982207683 cites W2141153536 @default.
- W2982207683 cites W2148743296 @default.
- W2982207683 cites W2152092242 @default.
- W2982207683 cites W2155335326 @default.
- W2982207683 cites W2162131256 @default.
- W2982207683 cites W2165359978 @default.
- W2982207683 cites W2194775991 @default.
- W2982207683 cites W2200126620 @default.
- W2982207683 cites W2235771060 @default.
- W2982207683 cites W2254716715 @default.
- W2982207683 cites W2473339561 @default.
- W2982207683 cites W2527341761 @default.
- W2982207683 cites W2548342201 @default.
- W2982207683 cites W2552537029 @default.
- W2982207683 cites W2564389826 @default.
- W2982207683 cites W2565639579 @default.
- W2982207683 cites W2581516228 @default.
- W2982207683 cites W2583659076 @default.
- W2982207683 cites W2729765972 @default.
- W2982207683 cites W2796672611 @default.
- W2982207683 cites W2808367315 @default.
- W2982207683 cites W2809286029 @default.
- W2982207683 cites W2891005525 @default.
- W2982207683 cites W3105636206 @default.
- W2982207683 cites W4233539062 @default.
- W2982207683 cites W598654174 @default.
- W2982207683 doi "https://doi.org/10.1007/s00521-019-04546-6" @default.
- W2982207683 hasPublicationYear "2019" @default.
- W2982207683 type Work @default.
- W2982207683 sameAs 2982207683 @default.
- W2982207683 citedByCount "12" @default.
- W2982207683 countsByYear W29822076832020 @default.
- W2982207683 countsByYear W29822076832021 @default.
- W2982207683 countsByYear W29822076832022 @default.
- W2982207683 countsByYear W29822076832023 @default.
- W2982207683 crossrefType "journal-article" @default.
- W2982207683 hasAuthorship W2982207683A5003331030 @default.
- W2982207683 hasAuthorship W2982207683A5029556301 @default.
- W2982207683 hasAuthorship W2982207683A5031414771 @default.
- W2982207683 hasAuthorship W2982207683A5031700895 @default.
- W2982207683 hasAuthorship W2982207683A5038251959 @default.
- W2982207683 hasAuthorship W2982207683A5047706755 @default.
- W2982207683 hasAuthorship W2982207683A5047835569 @default.
- W2982207683 hasAuthorship W2982207683A5051230496 @default.
- W2982207683 hasBestOaLocation W29822076832 @default.
- W2982207683 hasConcept C114614502 @default.
- W2982207683 hasConcept C153180895 @default.
- W2982207683 hasConcept C154945302 @default.
- W2982207683 hasConcept C160633673 @default.
- W2982207683 hasConcept C185592680 @default.
- W2982207683 hasConcept C186060115 @default.
- W2982207683 hasConcept C198531522 @default.
- W2982207683 hasConcept C31972630 @default.
- W2982207683 hasConcept C33923547 @default.
- W2982207683 hasConcept C41008148 @default.
- W2982207683 hasConcept C43617362 @default.
- W2982207683 hasConcept C49799701 @default.
- W2982207683 hasConcept C59822182 @default.
- W2982207683 hasConcept C66882249 @default.
- W2982207683 hasConcept C81363708 @default.
- W2982207683 hasConcept C86803240 @default.
- W2982207683 hasConcept C89600930 @default.
- W2982207683 hasConceptScore W2982207683C114614502 @default.
- W2982207683 hasConceptScore W2982207683C153180895 @default.
- W2982207683 hasConceptScore W2982207683C154945302 @default.
- W2982207683 hasConceptScore W2982207683C160633673 @default.