Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982219699> ?p ?o ?g. }
- W2982219699 abstract "Abstract Algorithmic differentiation (AD), also known as automatic differentiation, is a technology for accurate and efficient evaluation of derivatives of a function given as a computer model. The evaluations of such models are essential building blocks in numerous scientific computing and data analysis applications, including optimization, parameter identification, sensitivity analysis, uncertainty quantification, nonlinear equation solving, and integration of differential equations. We provide an introduction to AD and present its basic ideas and techniques, some of its most important results, the implementation paradigms it relies on, the connection it has to other domains including machine learning and parallel computing, and a few of the major open problems in the area. Topics we discuss include: forward mode and reverse mode of AD, higher‐order derivatives, operator overloading and source transformation, sparsity exploitation, checkpointing, cross‐country mode, and differentiating iterative processes. This article is categorized under: Algorithmic Development > Scalable Statistical Methods Technologies > Data Preprocessing" @default.
- W2982219699 created "2019-11-01" @default.
- W2982219699 creator A5049685547 @default.
- W2982219699 creator A5076366075 @default.
- W2982219699 date "2019-10-24" @default.
- W2982219699 modified "2023-10-09" @default.
- W2982219699 title "An introduction to algorithmic differentiation" @default.
- W2982219699 cites W1540853796 @default.
- W2982219699 cites W1569254270 @default.
- W2982219699 cites W163678414 @default.
- W2982219699 cites W1810240525 @default.
- W2982219699 cites W1963564197 @default.
- W2982219699 cites W1967134278 @default.
- W2982219699 cites W1972400398 @default.
- W2982219699 cites W1975435453 @default.
- W2982219699 cites W1978670539 @default.
- W2982219699 cites W1981186753 @default.
- W2982219699 cites W1991173503 @default.
- W2982219699 cites W1992493944 @default.
- W2982219699 cites W1995561370 @default.
- W2982219699 cites W1999333806 @default.
- W2982219699 cites W2006700733 @default.
- W2982219699 cites W2006962396 @default.
- W2982219699 cites W2011835437 @default.
- W2982219699 cites W2018995959 @default.
- W2982219699 cites W2025245525 @default.
- W2982219699 cites W2031070741 @default.
- W2982219699 cites W2039953621 @default.
- W2982219699 cites W2040131087 @default.
- W2982219699 cites W2044733003 @default.
- W2982219699 cites W2045126306 @default.
- W2982219699 cites W2050184979 @default.
- W2982219699 cites W2061825371 @default.
- W2982219699 cites W2064980205 @default.
- W2982219699 cites W2073285827 @default.
- W2982219699 cites W2077263499 @default.
- W2982219699 cites W2084820956 @default.
- W2982219699 cites W2095621348 @default.
- W2982219699 cites W2118676429 @default.
- W2982219699 cites W2120575449 @default.
- W2982219699 cites W2124855066 @default.
- W2982219699 cites W2133400152 @default.
- W2982219699 cites W2133644704 @default.
- W2982219699 cites W2137668429 @default.
- W2982219699 cites W2171679443 @default.
- W2982219699 cites W2336787226 @default.
- W2982219699 cites W2387022868 @default.
- W2982219699 cites W2444318814 @default.
- W2982219699 cites W2478429860 @default.
- W2982219699 cites W2495329635 @default.
- W2982219699 cites W2496722619 @default.
- W2982219699 cites W2502143042 @default.
- W2982219699 cites W2790847343 @default.
- W2982219699 cites W2795633107 @default.
- W2982219699 cites W3099270997 @default.
- W2982219699 cites W3100141945 @default.
- W2982219699 cites W4251637954 @default.
- W2982219699 doi "https://doi.org/10.1002/widm.1334" @default.
- W2982219699 hasPublicationYear "2019" @default.
- W2982219699 type Work @default.
- W2982219699 sameAs 2982219699 @default.
- W2982219699 citedByCount "7" @default.
- W2982219699 countsByYear W29822196992020 @default.
- W2982219699 countsByYear W29822196992022 @default.
- W2982219699 countsByYear W29822196992023 @default.
- W2982219699 crossrefType "journal-article" @default.
- W2982219699 hasAuthorship W2982219699A5049685547 @default.
- W2982219699 hasAuthorship W2982219699A5076366075 @default.
- W2982219699 hasBestOaLocation W29822196991 @default.
- W2982219699 hasConcept C104317684 @default.
- W2982219699 hasConcept C11413529 @default.
- W2982219699 hasConcept C133512626 @default.
- W2982219699 hasConcept C14036430 @default.
- W2982219699 hasConcept C154945302 @default.
- W2982219699 hasConcept C158448853 @default.
- W2982219699 hasConcept C17020691 @default.
- W2982219699 hasConcept C185592680 @default.
- W2982219699 hasConcept C204241405 @default.
- W2982219699 hasConcept C34736171 @default.
- W2982219699 hasConcept C41008148 @default.
- W2982219699 hasConcept C45374587 @default.
- W2982219699 hasConcept C48044578 @default.
- W2982219699 hasConcept C55493867 @default.
- W2982219699 hasConcept C77088390 @default.
- W2982219699 hasConcept C78458016 @default.
- W2982219699 hasConcept C80444323 @default.
- W2982219699 hasConcept C86339819 @default.
- W2982219699 hasConcept C86803240 @default.
- W2982219699 hasConceptScore W2982219699C104317684 @default.
- W2982219699 hasConceptScore W2982219699C11413529 @default.
- W2982219699 hasConceptScore W2982219699C133512626 @default.
- W2982219699 hasConceptScore W2982219699C14036430 @default.
- W2982219699 hasConceptScore W2982219699C154945302 @default.
- W2982219699 hasConceptScore W2982219699C158448853 @default.
- W2982219699 hasConceptScore W2982219699C17020691 @default.
- W2982219699 hasConceptScore W2982219699C185592680 @default.
- W2982219699 hasConceptScore W2982219699C204241405 @default.
- W2982219699 hasConceptScore W2982219699C34736171 @default.
- W2982219699 hasConceptScore W2982219699C41008148 @default.
- W2982219699 hasConceptScore W2982219699C45374587 @default.