Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982227503> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2982227503 endingPage "123253" @default.
- W2982227503 startingPage "123253" @default.
- W2982227503 abstract "Abstract The present work is aiming at statistical modeling and prediction of solubility of aspirin based on two intelligent methods including Response Surface Methodology (RSM) and Artificial Neural Networks (ANN). To develop the models, a data bank including 109 data belonging to the solubility of aspirin in ethanol, acetone, 2-propanol, 1-octanol, ethyl acetate, isobutanol, isobutyl acetate, 1-butanol, MIBK and propylene glycol as organic solvents was extracted from the literature. Temperature, molecular weight of the solvents, critical pressure and temperature and acentric factor were chosen as independent variables for the modeling. Both RSM and ANN models were statistically compared using coefficient of determination (R2), Root Mean Square Error (RMSE), Average Absolute Deviation (AAD%) and Sum of Absolute Residual (SAR) obtained for the data set. R2 and A.A.D% were determined as 0.9992 and 2.598% for ANN, and 0.997 and 3.884% for RSM model, respectively. It was identified that both developed model can accurately predict the solubility of aspirin in different organic solvents, however, ANN was more accurate due to its topology and structure, which promotes the accuracy of the model. The correlation was also verified with seven more experiments. It was found that the proposed statistical RSM model is able to obtain the solubility of aspirin in various organic solvents using extrapolation and/or interpolation feature." @default.
- W2982227503 created "2019-11-01" @default.
- W2982227503 creator A5041021508 @default.
- W2982227503 creator A5084459276 @default.
- W2982227503 date "2020-02-01" @default.
- W2982227503 modified "2023-10-18" @default.
- W2982227503 title "Statistical modeling of aspirin solubility in organic solvents by Response Surface Methodology and Artificial Neural Networks" @default.
- W2982227503 cites W1004730422 @default.
- W2982227503 cites W1984403197 @default.
- W2982227503 cites W1985363175 @default.
- W2982227503 cites W2000246436 @default.
- W2982227503 cites W2007932208 @default.
- W2982227503 cites W2013939740 @default.
- W2982227503 cites W2019544778 @default.
- W2982227503 cites W2054388633 @default.
- W2982227503 cites W2121702267 @default.
- W2982227503 cites W2344382941 @default.
- W2982227503 cites W2567148026 @default.
- W2982227503 cites W2743674767 @default.
- W2982227503 cites W2755532718 @default.
- W2982227503 cites W2808839648 @default.
- W2982227503 cites W2884061894 @default.
- W2982227503 cites W2900350354 @default.
- W2982227503 cites W2914697779 @default.
- W2982227503 cites W2940905314 @default.
- W2982227503 cites W873042955 @default.
- W2982227503 cites W2405268777 @default.
- W2982227503 doi "https://doi.org/10.1016/j.physa.2019.123253" @default.
- W2982227503 hasPublicationYear "2020" @default.
- W2982227503 type Work @default.
- W2982227503 sameAs 2982227503 @default.
- W2982227503 citedByCount "6" @default.
- W2982227503 countsByYear W29822275032020 @default.
- W2982227503 countsByYear W29822275032021 @default.
- W2982227503 countsByYear W29822275032022 @default.
- W2982227503 countsByYear W29822275032023 @default.
- W2982227503 crossrefType "journal-article" @default.
- W2982227503 hasAuthorship W2982227503A5041021508 @default.
- W2982227503 hasAuthorship W2982227503A5084459276 @default.
- W2982227503 hasConcept C119857082 @default.
- W2982227503 hasConcept C127413603 @default.
- W2982227503 hasConcept C150077022 @default.
- W2982227503 hasConcept C154945302 @default.
- W2982227503 hasConcept C155574463 @default.
- W2982227503 hasConcept C178790620 @default.
- W2982227503 hasConcept C185592680 @default.
- W2982227503 hasConcept C186060115 @default.
- W2982227503 hasConcept C192562407 @default.
- W2982227503 hasConcept C21880701 @default.
- W2982227503 hasConcept C2777628954 @default.
- W2982227503 hasConcept C41008148 @default.
- W2982227503 hasConcept C50644808 @default.
- W2982227503 hasConcept C55493867 @default.
- W2982227503 hasConcept C86803240 @default.
- W2982227503 hasConceptScore W2982227503C119857082 @default.
- W2982227503 hasConceptScore W2982227503C127413603 @default.
- W2982227503 hasConceptScore W2982227503C150077022 @default.
- W2982227503 hasConceptScore W2982227503C154945302 @default.
- W2982227503 hasConceptScore W2982227503C155574463 @default.
- W2982227503 hasConceptScore W2982227503C178790620 @default.
- W2982227503 hasConceptScore W2982227503C185592680 @default.
- W2982227503 hasConceptScore W2982227503C186060115 @default.
- W2982227503 hasConceptScore W2982227503C192562407 @default.
- W2982227503 hasConceptScore W2982227503C21880701 @default.
- W2982227503 hasConceptScore W2982227503C2777628954 @default.
- W2982227503 hasConceptScore W2982227503C41008148 @default.
- W2982227503 hasConceptScore W2982227503C50644808 @default.
- W2982227503 hasConceptScore W2982227503C55493867 @default.
- W2982227503 hasConceptScore W2982227503C86803240 @default.
- W2982227503 hasLocation W29822275031 @default.
- W2982227503 hasOpenAccess W2982227503 @default.
- W2982227503 hasPrimaryLocation W29822275031 @default.
- W2982227503 hasRelatedWork W2158005048 @default.
- W2982227503 hasRelatedWork W2354695375 @default.
- W2982227503 hasRelatedWork W2369149176 @default.
- W2982227503 hasRelatedWork W2386387936 @default.
- W2982227503 hasRelatedWork W2522643693 @default.
- W2982227503 hasRelatedWork W2899084033 @default.
- W2982227503 hasRelatedWork W3014163006 @default.
- W2982227503 hasRelatedWork W3036712336 @default.
- W2982227503 hasRelatedWork W3107474891 @default.
- W2982227503 hasRelatedWork W3215177327 @default.
- W2982227503 hasVolume "540" @default.
- W2982227503 isParatext "false" @default.
- W2982227503 isRetracted "false" @default.
- W2982227503 magId "2982227503" @default.
- W2982227503 workType "article" @default.