Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982271092> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2982271092 endingPage "107180" @default.
- W2982271092 startingPage "107180" @default.
- W2982271092 abstract "In order to accurately calculate the fuel savings after aero-engine washing, therefore the engine cleaning process flow can be arranged more scientifically and reasonably. In this paper, a derivation method of fuel savings model after engine washing based on delta fuel flow (DFF) degradation baseline and convolutional neural network prediction technology is proposed. Firstly, the fuel savings model of cruise phase is established based on gas path parameters related to the engine fuel consumption, and the QAR data’s trend on entire flight is mined, and the regularity of the gas path parameters in the cruise phase is extended to the entire flight, thereby the fuel savings model after engine washing of whole Flight is derived. In the model derivation process, the unwashed engine’s DFF degradation baseline after the wash point is predicted. According to the characteristics of DFF discrete time series, a discrete input process neural network prediction model based on discrete data convolution operation is established. The convolution operation of discrete data is used to replace the integral operation of continuous function, which effectively avoids the loss of fitting precision caused by the smooth processing of discrete time series data before the input of the process neural network model, and improves the prediction accuracy of discrete time series data. A denoising method combining Singular Value Decomposition (SVD) and Empirical Mode Decomposition (EMD) is used to denoise the DFF before and after engine washing, and the trend analysis method is used to solve the intersection of the unwashed state engine’s DFF degradation baseline and washed state engine’s DFF degradation baseline, thereby the washing effect cycle numbers is predicted, and in which the total fuel savings model of whole fleet after engine washing is derived by accumulating every flight fuel savings. The post-washed engine fuel saving calculation of an airline is used as a verification experiment. The results show that post-washed engine fuel saving prediction model presented in the paper is the closest to the actual fuel savings model." @default.
- W2982271092 created "2019-11-01" @default.
- W2982271092 creator A5031306802 @default.
- W2982271092 creator A5034113909 @default.
- W2982271092 creator A5078720616 @default.
- W2982271092 date "2020-02-01" @default.
- W2982271092 modified "2023-10-16" @default.
- W2982271092 title "Fuel savings model after aero-engine washing based on convolutional neural network prediction" @default.
- W2982271092 cites W2006708846 @default.
- W2982271092 cites W2023088161 @default.
- W2982271092 cites W2031282222 @default.
- W2982271092 cites W2032066963 @default.
- W2982271092 cites W2033765841 @default.
- W2982271092 cites W2040023707 @default.
- W2982271092 cites W2083512854 @default.
- W2982271092 cites W2089835799 @default.
- W2982271092 cites W2325497213 @default.
- W2982271092 cites W2767523907 @default.
- W2982271092 cites W2767745631 @default.
- W2982271092 cites W2792557492 @default.
- W2982271092 cites W2909567700 @default.
- W2982271092 cites W2918212782 @default.
- W2982271092 cites W4299733614 @default.
- W2982271092 doi "https://doi.org/10.1016/j.measurement.2019.107180" @default.
- W2982271092 hasPublicationYear "2020" @default.
- W2982271092 type Work @default.
- W2982271092 sameAs 2982271092 @default.
- W2982271092 citedByCount "8" @default.
- W2982271092 countsByYear W29822710922020 @default.
- W2982271092 countsByYear W29822710922021 @default.
- W2982271092 countsByYear W29822710922022 @default.
- W2982271092 countsByYear W29822710922023 @default.
- W2982271092 crossrefType "journal-article" @default.
- W2982271092 hasAuthorship W2982271092A5031306802 @default.
- W2982271092 hasAuthorship W2982271092A5034113909 @default.
- W2982271092 hasAuthorship W2982271092A5078720616 @default.
- W2982271092 hasConcept C106131492 @default.
- W2982271092 hasConcept C111919701 @default.
- W2982271092 hasConcept C11413529 @default.
- W2982271092 hasConcept C119599485 @default.
- W2982271092 hasConcept C119857082 @default.
- W2982271092 hasConcept C127413603 @default.
- W2982271092 hasConcept C151406439 @default.
- W2982271092 hasConcept C154945302 @default.
- W2982271092 hasConcept C171146098 @default.
- W2982271092 hasConcept C25570617 @default.
- W2982271092 hasConcept C2775924081 @default.
- W2982271092 hasConcept C41008148 @default.
- W2982271092 hasConcept C44154836 @default.
- W2982271092 hasConcept C45347329 @default.
- W2982271092 hasConcept C45882903 @default.
- W2982271092 hasConcept C47446073 @default.
- W2982271092 hasConcept C50644808 @default.
- W2982271092 hasConcept C98045186 @default.
- W2982271092 hasConceptScore W2982271092C106131492 @default.
- W2982271092 hasConceptScore W2982271092C111919701 @default.
- W2982271092 hasConceptScore W2982271092C11413529 @default.
- W2982271092 hasConceptScore W2982271092C119599485 @default.
- W2982271092 hasConceptScore W2982271092C119857082 @default.
- W2982271092 hasConceptScore W2982271092C127413603 @default.
- W2982271092 hasConceptScore W2982271092C151406439 @default.
- W2982271092 hasConceptScore W2982271092C154945302 @default.
- W2982271092 hasConceptScore W2982271092C171146098 @default.
- W2982271092 hasConceptScore W2982271092C25570617 @default.
- W2982271092 hasConceptScore W2982271092C2775924081 @default.
- W2982271092 hasConceptScore W2982271092C41008148 @default.
- W2982271092 hasConceptScore W2982271092C44154836 @default.
- W2982271092 hasConceptScore W2982271092C45347329 @default.
- W2982271092 hasConceptScore W2982271092C45882903 @default.
- W2982271092 hasConceptScore W2982271092C47446073 @default.
- W2982271092 hasConceptScore W2982271092C50644808 @default.
- W2982271092 hasConceptScore W2982271092C98045186 @default.
- W2982271092 hasFunder F4320321001 @default.
- W2982271092 hasFunder F4320335787 @default.
- W2982271092 hasLocation W29822710921 @default.
- W2982271092 hasOpenAccess W2982271092 @default.
- W2982271092 hasPrimaryLocation W29822710921 @default.
- W2982271092 hasRelatedWork W1915398038 @default.
- W2982271092 hasRelatedWork W2011248322 @default.
- W2982271092 hasRelatedWork W2076661204 @default.
- W2982271092 hasRelatedWork W2081563414 @default.
- W2982271092 hasRelatedWork W2127575060 @default.
- W2982271092 hasRelatedWork W2359718298 @default.
- W2982271092 hasRelatedWork W2363056446 @default.
- W2982271092 hasRelatedWork W2377062149 @default.
- W2982271092 hasRelatedWork W2380939102 @default.
- W2982271092 hasRelatedWork W3014107421 @default.
- W2982271092 hasVolume "151" @default.
- W2982271092 isParatext "false" @default.
- W2982271092 isRetracted "false" @default.
- W2982271092 magId "2982271092" @default.
- W2982271092 workType "article" @default.