Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982306926> ?p ?o ?g. }
- W2982306926 endingPage "13407" @default.
- W2982306926 startingPage "13383" @default.
- W2982306926 abstract "Abstract. Water plays an essential role in aerosol chemistry, gas–particle partitioning, and particle viscosity, but it is typically omitted in thermodynamic models describing the mixing within organic aerosol phases and the partitioning of semivolatile organics. In this study, we introduce the Binary Activity Thermodynamics (BAT) model, a water-sensitive reduced-complexity model treating the nonideal mixing of water and organics. The BAT model can process different levels of physicochemical mixture information enabling its application in the thermodynamic aerosol treatment within chemical transport models, the evaluation of humidity effects in environmental chamber studies, and the analysis of field observations. It is capable of using organic structure information including O:C, H:C, molar mass, and vapor pressure, which can be derived from identified compounds or estimated from bulk aerosol properties. A key feature of the BAT model is predicting the extent of liquid–liquid phase separation occurring within aqueous mixtures containing hydrophobic organics. This is crucial to simulating the abrupt change in water uptake behavior of moderately hygroscopic organics at high relative humidity, which is essential for capturing the correct behavior of organic aerosols serving as cloud condensation nuclei. For gas–particle partitioning predictions, we complement a volatility basis set (VBS) approach with the BAT model to account for nonideality and liquid–liquid equilibrium effects. To improve the computational efficiency of this approach, we trained two neural networks; the first for the prediction of aerosol water content at given relative humidity, and the second for the partitioning of semivolatile components. The integrated VBS + BAT model is benchmarked against high-fidelity molecular-level gas–particle equilibrium calculations based on the AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficient) model. Organic aerosol systems derived from α-pinene or isoprene oxidation are used for comparison. Predicted organic mass concentrations agree within less than a 5 % error in the isoprene case, which is a significant improvement over a traditional VBS implementation. In the case of the α-pinene system, the error is less than 2 % up to a relative humidity of 94 %, with larger errors past that point. The goal of the BAT model is to represent the bulk O:C and molar mass dependencies of a wide range of water–organic mixtures to a reasonable degree of accuracy. In this context, we discuss that the reduced-complexity effort may be poor at representing a specific binary water–organic mixture perfectly. However, the averaging effects of our reduced-complexity model become more representative when the mixture diversity increases in terms of organic functionality and number of components." @default.
- W2982306926 created "2019-11-08" @default.
- W2982306926 creator A5039411682 @default.
- W2982306926 creator A5073735260 @default.
- W2982306926 creator A5090701573 @default.
- W2982306926 date "2019-10-30" @default.
- W2982306926 modified "2023-10-17" @default.
- W2982306926 title "Relative-humidity-dependent organic aerosol thermodynamics via an efficient reduced-complexity model" @default.
- W2982306926 cites W1483809790 @default.
- W2982306926 cites W1551227777 @default.
- W2982306926 cites W1787473029 @default.
- W2982306926 cites W1835579209 @default.
- W2982306926 cites W1912305623 @default.
- W2982306926 cites W1963920118 @default.
- W2982306926 cites W1968696455 @default.
- W2982306926 cites W1968862760 @default.
- W2982306926 cites W1972587396 @default.
- W2982306926 cites W1976883040 @default.
- W2982306926 cites W1980026409 @default.
- W2982306926 cites W1983643715 @default.
- W2982306926 cites W1986718923 @default.
- W2982306926 cites W1991410388 @default.
- W2982306926 cites W1999139360 @default.
- W2982306926 cites W1999842422 @default.
- W2982306926 cites W2009213223 @default.
- W2982306926 cites W2011050862 @default.
- W2982306926 cites W2012893365 @default.
- W2982306926 cites W2013698639 @default.
- W2982306926 cites W2015133270 @default.
- W2982306926 cites W2024174582 @default.
- W2982306926 cites W2032017595 @default.
- W2982306926 cites W2035476315 @default.
- W2982306926 cites W2037636973 @default.
- W2982306926 cites W2042522215 @default.
- W2982306926 cites W2045586201 @default.
- W2982306926 cites W2047299290 @default.
- W2982306926 cites W2048640559 @default.
- W2982306926 cites W2055714082 @default.
- W2982306926 cites W2067157510 @default.
- W2982306926 cites W2071621624 @default.
- W2982306926 cites W2072692927 @default.
- W2982306926 cites W2074011388 @default.
- W2982306926 cites W2077173640 @default.
- W2982306926 cites W2087696707 @default.
- W2982306926 cites W2095150688 @default.
- W2982306926 cites W2099152712 @default.
- W2982306926 cites W2099277506 @default.
- W2982306926 cites W2099636727 @default.
- W2982306926 cites W2104277321 @default.
- W2982306926 cites W2111369201 @default.
- W2982306926 cites W2111669951 @default.
- W2982306926 cites W2119600877 @default.
- W2982306926 cites W2124554006 @default.
- W2982306926 cites W2124992912 @default.
- W2982306926 cites W2125740784 @default.
- W2982306926 cites W2126105726 @default.
- W2982306926 cites W2138858340 @default.
- W2982306926 cites W2141579736 @default.
- W2982306926 cites W2142199451 @default.
- W2982306926 cites W2144923407 @default.
- W2982306926 cites W2147672849 @default.
- W2982306926 cites W2149166648 @default.
- W2982306926 cites W2154772958 @default.
- W2982306926 cites W2158779569 @default.
- W2982306926 cites W2161205508 @default.
- W2982306926 cites W2164264901 @default.
- W2982306926 cites W2167214266 @default.
- W2982306926 cites W2171553946 @default.
- W2982306926 cites W2174196825 @default.
- W2982306926 cites W2224405182 @default.
- W2982306926 cites W2307226936 @default.
- W2982306926 cites W2313108540 @default.
- W2982306926 cites W2316670656 @default.
- W2982306926 cites W2343673841 @default.
- W2982306926 cites W2411212100 @default.
- W2982306926 cites W2511648696 @default.
- W2982306926 cites W2516409020 @default.
- W2982306926 cites W2560236648 @default.
- W2982306926 cites W2565516711 @default.
- W2982306926 cites W2587238546 @default.
- W2982306926 cites W2603396846 @default.
- W2982306926 cites W2608253988 @default.
- W2982306926 cites W2655264143 @default.
- W2982306926 cites W2740290017 @default.
- W2982306926 cites W2761238724 @default.
- W2982306926 cites W2769382577 @default.
- W2982306926 cites W2788828779 @default.
- W2982306926 cites W2799871440 @default.
- W2982306926 cites W2805654030 @default.
- W2982306926 cites W2883872199 @default.
- W2982306926 cites W2901396293 @default.
- W2982306926 cites W2904054621 @default.
- W2982306926 cites W2913240571 @default.
- W2982306926 cites W2914278798 @default.
- W2982306926 cites W81808495 @default.
- W2982306926 doi "https://doi.org/10.5194/acp-19-13383-2019" @default.
- W2982306926 hasPublicationYear "2019" @default.
- W2982306926 type Work @default.