Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982362945> ?p ?o ?g. }
- W2982362945 endingPage "116316" @default.
- W2982362945 startingPage "116316" @default.
- W2982362945 abstract "Determining the level of consciousness in patients with disorders of consciousness (DOC) remains challenging. To address this challenge, resting-state fMRI (rs-fMRI) has been widely used for detecting the local, regional, and network activity differences between DOC patients and healthy controls. Although substantial progress has been made towards this endeavor, the identification of robust rs-fMRI-based biomarkers for level of consciousness is still lacking. Recent developments in machine learning show promise as a tool to augment the discrimination between different states of consciousness in clinical practice. Here, we investigated whether machine learning models trained to make a binary distinction between conscious wakefulness and anesthetic-induced unconsciousness would then be capable of reliably identifying pathologically induced unconsciousness. We did so by extracting rs-fMRI-based features associated with local activity, regional homogeneity, and interregional functional activity in 44 subjects during wakefulness, light sedation, and unresponsiveness (deep sedation and general anesthesia), and subsequently using those features to train three distinct candidate machine learning classifiers: support vector machine, Extra Trees, artificial neural network. First, we show that all three classifiers achieve reliable performance within-dataset (via nested cross-validation), with a mean area under the receiver operating characteristic curve (AUC) of 0.95, 0.92, and 0.94, respectively. Additionally, we observed comparable cross-dataset performance (making predictions on the DOC data) as the anesthesia-trained classifiers demonstrated a consistent ability to discriminate between unresponsive wakefulness syndrome (UWS/VS) patients and healthy controls with mean AUC’s of 0.99, 0.94, 0.98, respectively. Lastly, we explored the potential of applying the aforementioned classifiers towards discriminating intermediate states of consciousness, specifically, subjects under light anesthetic sedation and patients diagnosed as having a minimally conscious state (MCS). Our findings demonstrate that machine learning classifiers trained on rs-fMRI features derived from participants under anesthesia have potential to aid the discrimination between degrees of pathological unconsciousness in clinical patients." @default.
- W2982362945 created "2019-11-08" @default.
- W2982362945 creator A5001464571 @default.
- W2982362945 creator A5009989193 @default.
- W2982362945 creator A5021806277 @default.
- W2982362945 creator A5049850013 @default.
- W2982362945 creator A5070023037 @default.
- W2982362945 creator A5076033503 @default.
- W2982362945 creator A5080287940 @default.
- W2982362945 creator A5091398848 @default.
- W2982362945 date "2020-02-01" @default.
- W2982362945 modified "2023-09-27" @default.
- W2982362945 title "Pharmacologically informed machine learning approach for identifying pathological states of unconsciousness via resting-state fMRI" @default.
- W2982362945 cites W1220793025 @default.
- W2982362945 cites W1437335841 @default.
- W2982362945 cites W1506338193 @default.
- W2982362945 cites W1575918304 @default.
- W2982362945 cites W1597651850 @default.
- W2982362945 cites W1864070391 @default.
- W2982362945 cites W1931427066 @default.
- W2982362945 cites W1952204933 @default.
- W2982362945 cites W1965582900 @default.
- W2982362945 cites W1967836750 @default.
- W2982362945 cites W1970545979 @default.
- W2982362945 cites W1973798824 @default.
- W2982362945 cites W1975989272 @default.
- W2982362945 cites W1993985529 @default.
- W2982362945 cites W1998940813 @default.
- W2982362945 cites W1999706591 @default.
- W2982362945 cites W2007213925 @default.
- W2982362945 cites W2012249671 @default.
- W2982362945 cites W2020966500 @default.
- W2982362945 cites W2021208900 @default.
- W2982362945 cites W2033349308 @default.
- W2982362945 cites W2037478258 @default.
- W2982362945 cites W2047189453 @default.
- W2982362945 cites W2048265343 @default.
- W2982362945 cites W2056132907 @default.
- W2982362945 cites W2065445371 @default.
- W2982362945 cites W2069780795 @default.
- W2982362945 cites W2070450901 @default.
- W2982362945 cites W2071300176 @default.
- W2982362945 cites W2079788707 @default.
- W2982362945 cites W2087987909 @default.
- W2982362945 cites W2089572795 @default.
- W2982362945 cites W2091756811 @default.
- W2982362945 cites W2100634972 @default.
- W2982362945 cites W2106283125 @default.
- W2982362945 cites W2110447288 @default.
- W2982362945 cites W2112639978 @default.
- W2982362945 cites W2112688502 @default.
- W2982362945 cites W2113357974 @default.
- W2982362945 cites W2114228921 @default.
- W2982362945 cites W2122435212 @default.
- W2982362945 cites W2123477708 @default.
- W2982362945 cites W2126155630 @default.
- W2982362945 cites W2127501699 @default.
- W2982362945 cites W2131571019 @default.
- W2982362945 cites W2135390742 @default.
- W2982362945 cites W2135475851 @default.
- W2982362945 cites W2142794733 @default.
- W2982362945 cites W2143426320 @default.
- W2982362945 cites W2148228108 @default.
- W2982362945 cites W2150682709 @default.
- W2982362945 cites W2151591509 @default.
- W2982362945 cites W2151872374 @default.
- W2982362945 cites W2151928874 @default.
- W2982362945 cites W2152325645 @default.
- W2982362945 cites W2155197382 @default.
- W2982362945 cites W2155566869 @default.
- W2982362945 cites W2161502085 @default.
- W2982362945 cites W2162019025 @default.
- W2982362945 cites W2169787465 @default.
- W2982362945 cites W2170872204 @default.
- W2982362945 cites W22594088 @default.
- W2982362945 cites W2294553905 @default.
- W2982362945 cites W2343065118 @default.
- W2982362945 cites W2349946775 @default.
- W2982362945 cites W2413233263 @default.
- W2982362945 cites W2518058704 @default.
- W2982362945 cites W2547120907 @default.
- W2982362945 cites W2554392667 @default.
- W2982362945 cites W2567143589 @default.
- W2982362945 cites W2567531549 @default.
- W2982362945 cites W2617083618 @default.
- W2982362945 cites W2620421155 @default.
- W2982362945 cites W2626515687 @default.
- W2982362945 cites W2761181345 @default.
- W2982362945 cites W2762418274 @default.
- W2982362945 cites W2786504149 @default.
- W2982362945 cites W2786964764 @default.
- W2982362945 cites W2811075952 @default.
- W2982362945 cites W2864903410 @default.
- W2982362945 cites W2889268521 @default.
- W2982362945 cites W2895368692 @default.
- W2982362945 cites W2913125551 @default.
- W2982362945 cites W2919115771 @default.
- W2982362945 doi "https://doi.org/10.1016/j.neuroimage.2019.116316" @default.