Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982366154> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2982366154 abstract "Nowadays, a massive number of data, referred as big data, are being collected from social networks and Internet of Things (IoT), which are of tremendous value. Many deep learning-based methods made great progress in the extraction of knowledge of those data. However, the knowledge extraction of the law data poses vast challenges on the deep learning, since the law data usually contain the privacy information. In addition, the amount of law data of an institution is not large enough to well train a deep model. To solve these challenges, some privacy-preserving deep learning are proposed to capture knowledge of privacy data. In this paper, we review the emerging topics of deep learning for the feature learning of the privacy data. Then, we discuss the problems and the future trend in deep learning for privacy-preserving feature learning on law data." @default.
- W2982366154 created "2019-11-08" @default.
- W2982366154 creator A5006536923 @default.
- W2982366154 creator A5053156190 @default.
- W2982366154 creator A5063999588 @default.
- W2982366154 creator A5084423408 @default.
- W2982366154 creator A5089176198 @default.
- W2982366154 date "2019-08-01" @default.
- W2982366154 modified "2023-09-27" @default.
- W2982366154 title "Privacy-Preserving Deep Learning Models for Law Big Data Feature Learning" @default.
- W2982366154 cites W1677182931 @default.
- W2982366154 cites W2053637704 @default.
- W2982366154 cites W2075563352 @default.
- W2982366154 cites W2077217970 @default.
- W2982366154 cites W2109426455 @default.
- W2982366154 cites W2132172731 @default.
- W2982366154 cites W2174413868 @default.
- W2982366154 cites W2317339301 @default.
- W2982366154 cites W2476324168 @default.
- W2982366154 cites W2576683119 @default.
- W2982366154 cites W2582328856 @default.
- W2982366154 cites W2591882872 @default.
- W2982366154 cites W2592144640 @default.
- W2982366154 cites W2597998853 @default.
- W2982366154 cites W2604462068 @default.
- W2982366154 cites W2701059868 @default.
- W2982366154 cites W2729742878 @default.
- W2982366154 cites W2741756174 @default.
- W2982366154 cites W2767201895 @default.
- W2982366154 cites W2781091734 @default.
- W2982366154 cites W2794222060 @default.
- W2982366154 cites W2799040448 @default.
- W2982366154 cites W2801874531 @default.
- W2982366154 cites W2803199352 @default.
- W2982366154 cites W2807925339 @default.
- W2982366154 cites W2815313157 @default.
- W2982366154 cites W2884294766 @default.
- W2982366154 cites W2886253048 @default.
- W2982366154 cites W2892226435 @default.
- W2982366154 cites W2962904552 @default.
- W2982366154 cites W2963313259 @default.
- W2982366154 cites W3099984696 @default.
- W2982366154 cites W3141585064 @default.
- W2982366154 cites W4205228770 @default.
- W2982366154 doi "https://doi.org/10.1109/dasc/picom/cbdcom/cyberscitech.2019.00035" @default.
- W2982366154 hasPublicationYear "2019" @default.
- W2982366154 type Work @default.
- W2982366154 sameAs 2982366154 @default.
- W2982366154 citedByCount "1" @default.
- W2982366154 countsByYear W29823661542020 @default.
- W2982366154 crossrefType "proceedings-article" @default.
- W2982366154 hasAuthorship W2982366154A5006536923 @default.
- W2982366154 hasAuthorship W2982366154A5053156190 @default.
- W2982366154 hasAuthorship W2982366154A5063999588 @default.
- W2982366154 hasAuthorship W2982366154A5084423408 @default.
- W2982366154 hasAuthorship W2982366154A5089176198 @default.
- W2982366154 hasConcept C108583219 @default.
- W2982366154 hasConcept C108827166 @default.
- W2982366154 hasConcept C119857082 @default.
- W2982366154 hasConcept C123201435 @default.
- W2982366154 hasConcept C124101348 @default.
- W2982366154 hasConcept C154945302 @default.
- W2982366154 hasConcept C2522767166 @default.
- W2982366154 hasConcept C41008148 @default.
- W2982366154 hasConcept C59404180 @default.
- W2982366154 hasConcept C67186912 @default.
- W2982366154 hasConcept C75684735 @default.
- W2982366154 hasConcept C77088390 @default.
- W2982366154 hasConceptScore W2982366154C108583219 @default.
- W2982366154 hasConceptScore W2982366154C108827166 @default.
- W2982366154 hasConceptScore W2982366154C119857082 @default.
- W2982366154 hasConceptScore W2982366154C123201435 @default.
- W2982366154 hasConceptScore W2982366154C124101348 @default.
- W2982366154 hasConceptScore W2982366154C154945302 @default.
- W2982366154 hasConceptScore W2982366154C2522767166 @default.
- W2982366154 hasConceptScore W2982366154C41008148 @default.
- W2982366154 hasConceptScore W2982366154C59404180 @default.
- W2982366154 hasConceptScore W2982366154C67186912 @default.
- W2982366154 hasConceptScore W2982366154C75684735 @default.
- W2982366154 hasConceptScore W2982366154C77088390 @default.
- W2982366154 hasLocation W29823661541 @default.
- W2982366154 hasOpenAccess W2982366154 @default.
- W2982366154 hasPrimaryLocation W29823661541 @default.
- W2982366154 hasRelatedWork W2486847405 @default.
- W2982366154 hasRelatedWork W2772434162 @default.
- W2982366154 hasRelatedWork W2946016983 @default.
- W2982366154 hasRelatedWork W2982366154 @default.
- W2982366154 hasRelatedWork W2986207556 @default.
- W2982366154 hasRelatedWork W3124304076 @default.
- W2982366154 hasRelatedWork W3193453725 @default.
- W2982366154 hasRelatedWork W4241744716 @default.
- W2982366154 hasRelatedWork W4285815702 @default.
- W2982366154 hasRelatedWork W2602482767 @default.
- W2982366154 isParatext "false" @default.
- W2982366154 isRetracted "false" @default.
- W2982366154 magId "2982366154" @default.
- W2982366154 workType "article" @default.