Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982395652> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2982395652 abstract "Many BigData applications require to perform quick join operations on different large-scale real-time data streams. The key challenge to design an efficient stream join system is how to reasonably partition the streaming data among distributed processing nodes to avoid high density of join computation. However, the skewed distribution of real world streams raises great challenges for streaming data partitioning in distributed stream join systems. Existing hash based partitioning schemes incur significant load imbalance which leads to low system throughput and long processing latency, while shuffling based strategies incur redundant join computation and much more communication. To address this issue, in this paper, we propose and implement a scalable distributed stream join system, Simois, which shuffles the potential top heavy-load keys while hashing the others. However, how to identify the keys which lead to the heavy workload imbalance is challenging, because the heavy workload is determined by the current joint status of two streams, and the distribution of the two streams may change with time. To solve this problem, we design a novel efficient exponential counting scheme for identifying the keys with the heaviest workload in the two dynamic streams. The proposed exponential counting scheme needs extremely low computation and space cost, so that it can be well implemented in a stream processing system. Moreover, we design a popularity decline algorithm to make our design adaptive to the highly dynamic changes of streams. We implement Simois on top of Apache Storm and conduct comprehensive experiments using large-scale real world traces. Experiment results show that Simois improves the system throughput significantly by 52% and reduces the average latency by 37%, compared to existing state-of-the-art designs." @default.
- W2982395652 created "2019-11-08" @default.
- W2982395652 creator A5022262922 @default.
- W2982395652 creator A5053447705 @default.
- W2982395652 creator A5072876554 @default.
- W2982395652 date "2019-07-01" @default.
- W2982395652 modified "2023-10-05" @default.
- W2982395652 title "Simois: A Scalable Distributed Stream Join System with Skewed Workloads" @default.
- W2982395652 cites W1497089183 @default.
- W2982395652 cites W2008888174 @default.
- W2982395652 cites W2037027334 @default.
- W2982395652 cites W2080234606 @default.
- W2982395652 cites W2114226753 @default.
- W2982395652 cites W2115622196 @default.
- W2982395652 cites W2120276090 @default.
- W2982395652 cites W2126540423 @default.
- W2982395652 cites W2140894225 @default.
- W2982395652 cites W2442561801 @default.
- W2982395652 cites W2536427613 @default.
- W2982395652 cites W2580077391 @default.
- W2982395652 cites W2742211145 @default.
- W2982395652 cites W2768459599 @default.
- W2982395652 cites W2802970493 @default.
- W2982395652 cites W2888900074 @default.
- W2982395652 cites W2900412781 @default.
- W2982395652 cites W2913854892 @default.
- W2982395652 cites W2963580420 @default.
- W2982395652 cites W2972203418 @default.
- W2982395652 cites W3103362336 @default.
- W2982395652 cites W816218384 @default.
- W2982395652 doi "https://doi.org/10.1109/icdcs.2019.00026" @default.
- W2982395652 hasPublicationYear "2019" @default.
- W2982395652 type Work @default.
- W2982395652 sameAs 2982395652 @default.
- W2982395652 citedByCount "7" @default.
- W2982395652 countsByYear W29823956522019 @default.
- W2982395652 countsByYear W29823956522021 @default.
- W2982395652 countsByYear W29823956522022 @default.
- W2982395652 countsByYear W29823956522023 @default.
- W2982395652 crossrefType "proceedings-article" @default.
- W2982395652 hasAuthorship W2982395652A5022262922 @default.
- W2982395652 hasAuthorship W2982395652A5053447705 @default.
- W2982395652 hasAuthorship W2982395652A5072876554 @default.
- W2982395652 hasConcept C111919701 @default.
- W2982395652 hasConcept C114614502 @default.
- W2982395652 hasConcept C120314980 @default.
- W2982395652 hasConcept C173608175 @default.
- W2982395652 hasConcept C2776124973 @default.
- W2982395652 hasConcept C33923547 @default.
- W2982395652 hasConcept C41008148 @default.
- W2982395652 hasConcept C48044578 @default.
- W2982395652 hasConcept C77088390 @default.
- W2982395652 hasConceptScore W2982395652C111919701 @default.
- W2982395652 hasConceptScore W2982395652C114614502 @default.
- W2982395652 hasConceptScore W2982395652C120314980 @default.
- W2982395652 hasConceptScore W2982395652C173608175 @default.
- W2982395652 hasConceptScore W2982395652C2776124973 @default.
- W2982395652 hasConceptScore W2982395652C33923547 @default.
- W2982395652 hasConceptScore W2982395652C41008148 @default.
- W2982395652 hasConceptScore W2982395652C48044578 @default.
- W2982395652 hasConceptScore W2982395652C77088390 @default.
- W2982395652 hasLocation W29823956521 @default.
- W2982395652 hasOpenAccess W2982395652 @default.
- W2982395652 hasPrimaryLocation W29823956521 @default.
- W2982395652 hasRelatedWork W1569389315 @default.
- W2982395652 hasRelatedWork W1992741870 @default.
- W2982395652 hasRelatedWork W2103234717 @default.
- W2982395652 hasRelatedWork W2302028273 @default.
- W2982395652 hasRelatedWork W2364921833 @default.
- W2982395652 hasRelatedWork W2380023786 @default.
- W2982395652 hasRelatedWork W2385146268 @default.
- W2982395652 hasRelatedWork W2546696010 @default.
- W2982395652 hasRelatedWork W575918167 @default.
- W2982395652 hasRelatedWork W2503642292 @default.
- W2982395652 isParatext "false" @default.
- W2982395652 isRetracted "false" @default.
- W2982395652 magId "2982395652" @default.
- W2982395652 workType "article" @default.