Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982430646> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2982430646 endingPage "3759" @default.
- W2982430646 startingPage "3754" @default.
- W2982430646 abstract "Existing image reconstruction methods frequently improve their robustness by using various nonsquared loss functions, which are still potentially sensitive to the outliers. More specifically, when certain samples in data sets encounter severe contamination, these methods cannot identify and filter out the ill ones, and thus lead to the functional degeneration of the associated models. To address this issue, we propose a general framework, named robust and sparse weight learning (RSWL), to compute the adaptive weights based on an objective for robustness and sparsity. More importantly, the degree of the sparsity is steerable, such that only k well-reserved samples are activated during the optimization of our model. As a result, the severely polluted or damaged samples are eliminated, and the robustness is ensured. The framework is further leveraged against a 2-D image reconstruction task. Theoretical analysis and extensive experiments are presented to demonstrate the superiority of the proposed method." @default.
- W2982430646 created "2019-11-08" @default.
- W2982430646 creator A5003222421 @default.
- W2982430646 creator A5050852420 @default.
- W2982430646 creator A5065037360 @default.
- W2982430646 creator A5068918243 @default.
- W2982430646 date "2020-09-01" @default.
- W2982430646 modified "2023-10-16" @default.
- W2982430646 title "Adaptive Robust Low-Rank 2-D Reconstruction With Steerable Sparsity" @default.
- W2982430646 cites W1540764732 @default.
- W2982430646 cites W1966644764 @default.
- W2982430646 cites W1997011019 @default.
- W2982430646 cites W2034481920 @default.
- W2982430646 cites W2089468765 @default.
- W2982430646 cites W2094034700 @default.
- W2982430646 cites W2102544846 @default.
- W2982430646 cites W2103560185 @default.
- W2982430646 cites W211921589 @default.
- W2982430646 cites W2135081536 @default.
- W2982430646 cites W2284760372 @default.
- W2982430646 cites W2593948145 @default.
- W2982430646 cites W2611015177 @default.
- W2982430646 cites W2742001166 @default.
- W2982430646 cites W4210668077 @default.
- W2982430646 doi "https://doi.org/10.1109/tnnls.2019.2944650" @default.
- W2982430646 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31675345" @default.
- W2982430646 hasPublicationYear "2020" @default.
- W2982430646 type Work @default.
- W2982430646 sameAs 2982430646 @default.
- W2982430646 citedByCount "3" @default.
- W2982430646 countsByYear W29824306462021 @default.
- W2982430646 countsByYear W29824306462022 @default.
- W2982430646 countsByYear W29824306462023 @default.
- W2982430646 crossrefType "journal-article" @default.
- W2982430646 hasAuthorship W2982430646A5003222421 @default.
- W2982430646 hasAuthorship W2982430646A5050852420 @default.
- W2982430646 hasAuthorship W2982430646A5065037360 @default.
- W2982430646 hasAuthorship W2982430646A5068918243 @default.
- W2982430646 hasConcept C104317684 @default.
- W2982430646 hasConcept C119857082 @default.
- W2982430646 hasConcept C124101348 @default.
- W2982430646 hasConcept C153180895 @default.
- W2982430646 hasConcept C154945302 @default.
- W2982430646 hasConcept C185592680 @default.
- W2982430646 hasConcept C41008148 @default.
- W2982430646 hasConcept C55493867 @default.
- W2982430646 hasConcept C63479239 @default.
- W2982430646 hasConcept C79337645 @default.
- W2982430646 hasConceptScore W2982430646C104317684 @default.
- W2982430646 hasConceptScore W2982430646C119857082 @default.
- W2982430646 hasConceptScore W2982430646C124101348 @default.
- W2982430646 hasConceptScore W2982430646C153180895 @default.
- W2982430646 hasConceptScore W2982430646C154945302 @default.
- W2982430646 hasConceptScore W2982430646C185592680 @default.
- W2982430646 hasConceptScore W2982430646C41008148 @default.
- W2982430646 hasConceptScore W2982430646C55493867 @default.
- W2982430646 hasConceptScore W2982430646C63479239 @default.
- W2982430646 hasConceptScore W2982430646C79337645 @default.
- W2982430646 hasFunder F4320321001 @default.
- W2982430646 hasFunder F4320321392 @default.
- W2982430646 hasFunder F4320321543 @default.
- W2982430646 hasFunder F4320335777 @default.
- W2982430646 hasIssue "9" @default.
- W2982430646 hasLocation W29824306461 @default.
- W2982430646 hasLocation W29824306462 @default.
- W2982430646 hasOpenAccess W2982430646 @default.
- W2982430646 hasPrimaryLocation W29824306461 @default.
- W2982430646 hasRelatedWork W1977854766 @default.
- W2982430646 hasRelatedWork W2135642348 @default.
- W2982430646 hasRelatedWork W2160314512 @default.
- W2982430646 hasRelatedWork W2594663467 @default.
- W2982430646 hasRelatedWork W2961085424 @default.
- W2982430646 hasRelatedWork W3113667672 @default.
- W2982430646 hasRelatedWork W3176112670 @default.
- W2982430646 hasRelatedWork W4232379160 @default.
- W2982430646 hasRelatedWork W4306674287 @default.
- W2982430646 hasRelatedWork W73199774 @default.
- W2982430646 hasVolume "31" @default.
- W2982430646 isParatext "false" @default.
- W2982430646 isRetracted "false" @default.
- W2982430646 magId "2982430646" @default.
- W2982430646 workType "article" @default.