Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982459430> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2982459430 abstract "Traffic accident duration prediction provides an important basis for traffic mitigation measures after accidents. An accident duration identification method based on velocity thermogram has been established in order to obtain the traffic recovery time after the accident vehicles were removed from the scene. The AIC (Akaike Information Criterion) and the BIC (Bayesian Information Criterion) were applied to fit the probability distribution of the accident duration, and the results showed that the lognormal distribution fitted best. Two multiple linear regression models predicting total duration and clearance time respectively have been constructed based on 9 variables including temporal, spatial, environmental, traffic and accident detail variables. Results showed that traffic condition, location type, accident type and police presence significantly affected total accident duration, while response time and accident type played a significant role in predicting clearance time. After deleting the samples with too short duration, the performance of the two models were both significantly improved, and MAPE were 27.1% and 49.8% respectively. In order to test the performance of the multiple linear regression model, two artificial neural network (ANN) models were also established for comparison. The results of ANN showed more prediction errors and less stability. In general, the multiple linear regression models performed better than ANN." @default.
- W2982459430 created "2019-11-08" @default.
- W2982459430 creator A5001989503 @default.
- W2982459430 creator A5024790920 @default.
- W2982459430 creator A5073501391 @default.
- W2982459430 date "2019-07-01" @default.
- W2982459430 modified "2023-10-18" @default.
- W2982459430 title "Prediction of urban expressway total traffic accident duration based on multiple linear regression and artificial neural network" @default.
- W2982459430 cites W1963765837 @default.
- W2982459430 cites W1965036911 @default.
- W2982459430 cites W1994567542 @default.
- W2982459430 cites W2016840500 @default.
- W2982459430 cites W2035481685 @default.
- W2982459430 cites W2061528170 @default.
- W2982459430 cites W2078584509 @default.
- W2982459430 cites W2088796177 @default.
- W2982459430 cites W2100504860 @default.
- W2982459430 cites W2126592598 @default.
- W2982459430 cites W2294889300 @default.
- W2982459430 cites W2341201864 @default.
- W2982459430 cites W2783542682 @default.
- W2982459430 cites W2794582213 @default.
- W2982459430 cites W2883340316 @default.
- W2982459430 cites W2910831647 @default.
- W2982459430 doi "https://doi.org/10.1109/ictis.2019.8883690" @default.
- W2982459430 hasPublicationYear "2019" @default.
- W2982459430 type Work @default.
- W2982459430 sameAs 2982459430 @default.
- W2982459430 citedByCount "6" @default.
- W2982459430 countsByYear W29824594302021 @default.
- W2982459430 countsByYear W29824594302022 @default.
- W2982459430 countsByYear W29824594302023 @default.
- W2982459430 crossrefType "proceedings-article" @default.
- W2982459430 hasAuthorship W2982459430A5001989503 @default.
- W2982459430 hasAuthorship W2982459430A5024790920 @default.
- W2982459430 hasAuthorship W2982459430A5073501391 @default.
- W2982459430 hasConcept C105795698 @default.
- W2982459430 hasConcept C111472728 @default.
- W2982459430 hasConcept C112758219 @default.
- W2982459430 hasConcept C124952713 @default.
- W2982459430 hasConcept C126674687 @default.
- W2982459430 hasConcept C138885662 @default.
- W2982459430 hasConcept C142362112 @default.
- W2982459430 hasConcept C151620405 @default.
- W2982459430 hasConcept C152877465 @default.
- W2982459430 hasConcept C154945302 @default.
- W2982459430 hasConcept C168136583 @default.
- W2982459430 hasConcept C2780289543 @default.
- W2982459430 hasConcept C33923547 @default.
- W2982459430 hasConcept C41008148 @default.
- W2982459430 hasConcept C48921125 @default.
- W2982459430 hasConcept C50644808 @default.
- W2982459430 hasConcept C83546350 @default.
- W2982459430 hasConceptScore W2982459430C105795698 @default.
- W2982459430 hasConceptScore W2982459430C111472728 @default.
- W2982459430 hasConceptScore W2982459430C112758219 @default.
- W2982459430 hasConceptScore W2982459430C124952713 @default.
- W2982459430 hasConceptScore W2982459430C126674687 @default.
- W2982459430 hasConceptScore W2982459430C138885662 @default.
- W2982459430 hasConceptScore W2982459430C142362112 @default.
- W2982459430 hasConceptScore W2982459430C151620405 @default.
- W2982459430 hasConceptScore W2982459430C152877465 @default.
- W2982459430 hasConceptScore W2982459430C154945302 @default.
- W2982459430 hasConceptScore W2982459430C168136583 @default.
- W2982459430 hasConceptScore W2982459430C2780289543 @default.
- W2982459430 hasConceptScore W2982459430C33923547 @default.
- W2982459430 hasConceptScore W2982459430C41008148 @default.
- W2982459430 hasConceptScore W2982459430C48921125 @default.
- W2982459430 hasConceptScore W2982459430C50644808 @default.
- W2982459430 hasConceptScore W2982459430C83546350 @default.
- W2982459430 hasLocation W29824594301 @default.
- W2982459430 hasOpenAccess W2982459430 @default.
- W2982459430 hasPrimaryLocation W29824594301 @default.
- W2982459430 hasRelatedWork W2062105804 @default.
- W2982459430 hasRelatedWork W2074792616 @default.
- W2982459430 hasRelatedWork W2375721435 @default.
- W2982459430 hasRelatedWork W2584544592 @default.
- W2982459430 hasRelatedWork W3001120667 @default.
- W2982459430 hasRelatedWork W3122861356 @default.
- W2982459430 hasRelatedWork W3197578900 @default.
- W2982459430 hasRelatedWork W4214526181 @default.
- W2982459430 hasRelatedWork W4290879003 @default.
- W2982459430 hasRelatedWork W2738033194 @default.
- W2982459430 isParatext "false" @default.
- W2982459430 isRetracted "false" @default.
- W2982459430 magId "2982459430" @default.
- W2982459430 workType "article" @default.