Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982488225> ?p ?o ?g. }
- W2982488225 endingPage "13" @default.
- W2982488225 startingPage "1" @default.
- W2982488225 abstract "The neuromuscular disorders are diagnosed using electromyographic (EMG) signals. Machine learning algorithms are employed as a decision support system to diagnose neuromuscular disorders. This paper compares bagging and boosting ensemble learning methods to classify EMG signals automatically. Even though ensemble classifiers’ efficacy in relation to real-life issues has been presented in numerous studies, there are almost no studies which focus on the feasibility of bagging and boosting ensemble classifiers to diagnose the neuromuscular disorders. Therefore, the purpose of this paper is to assess the feasibility of bagging and boosting ensemble classifiers to diagnose neuromuscular disorders through the use of EMG signals. It should be understood that there are three steps to this method, where the step number one is to calculate the wavelet packed coefficients (WPC) for every type of EMG signal. After this, it is necessary to calculate statistical values of WPC so that the distribution of wavelet coefficients could be demonstrated. In the last step, an ensemble classifier used the extracted features as an input of the classifier to diagnose the neuromuscular disorders. Experimental results showed the ensemble classifiers achieved better performance for diagnosis of neuromuscular disorders. Results are promising and showed that the AdaBoost with random forest ensemble method achieved an accuracy of 99.08%, F -measure 0.99, AUC 1, and kappa statistic 0.99." @default.
- W2982488225 created "2019-11-08" @default.
- W2982488225 creator A5018733638 @default.
- W2982488225 creator A5076009908 @default.
- W2982488225 date "2019-10-31" @default.
- W2982488225 modified "2023-10-14" @default.
- W2982488225 title "Comparison of Bagging and Boosting Ensemble Machine Learning Methods for Automated EMG Signal Classification" @default.
- W2982488225 cites W1444168786 @default.
- W2982488225 cites W1965551074 @default.
- W2982488225 cites W1967128670 @default.
- W2982488225 cites W1970050892 @default.
- W2982488225 cites W1975846642 @default.
- W2982488225 cites W1981173169 @default.
- W2982488225 cites W1988739857 @default.
- W2982488225 cites W1989099654 @default.
- W2982488225 cites W1996021349 @default.
- W2982488225 cites W1996029688 @default.
- W2982488225 cites W2001061109 @default.
- W2982488225 cites W2004797722 @default.
- W2982488225 cites W2012297890 @default.
- W2982488225 cites W2022319257 @default.
- W2982488225 cites W2038486972 @default.
- W2982488225 cites W2044628302 @default.
- W2982488225 cites W2053154970 @default.
- W2982488225 cites W2056933353 @default.
- W2982488225 cites W2064493351 @default.
- W2982488225 cites W2078117758 @default.
- W2982488225 cites W2079922506 @default.
- W2982488225 cites W2081748412 @default.
- W2982488225 cites W2093265755 @default.
- W2982488225 cites W2098914003 @default.
- W2982488225 cites W2115790233 @default.
- W2982488225 cites W2118578744 @default.
- W2982488225 cites W2123182941 @default.
- W2982488225 cites W2123879611 @default.
- W2982488225 cites W2126766093 @default.
- W2982488225 cites W2127358239 @default.
- W2982488225 cites W2143593953 @default.
- W2982488225 cites W2149072817 @default.
- W2982488225 cites W2157124852 @default.
- W2982488225 cites W2335723562 @default.
- W2982488225 cites W2521878393 @default.
- W2982488225 cites W2561954922 @default.
- W2982488225 cites W2584448792 @default.
- W2982488225 cites W2765859029 @default.
- W2982488225 cites W2787914842 @default.
- W2982488225 cites W2897127292 @default.
- W2982488225 cites W2988754001 @default.
- W2982488225 cites W4236137412 @default.
- W2982488225 cites W4244440730 @default.
- W2982488225 cites W2089377585 @default.
- W2982488225 doi "https://doi.org/10.1155/2019/9152506" @default.
- W2982488225 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6885261" @default.
- W2982488225 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31828145" @default.
- W2982488225 hasPublicationYear "2019" @default.
- W2982488225 type Work @default.
- W2982488225 sameAs 2982488225 @default.
- W2982488225 citedByCount "47" @default.
- W2982488225 countsByYear W29824882252020 @default.
- W2982488225 countsByYear W29824882252021 @default.
- W2982488225 countsByYear W29824882252022 @default.
- W2982488225 countsByYear W29824882252023 @default.
- W2982488225 crossrefType "journal-article" @default.
- W2982488225 hasAuthorship W2982488225A5018733638 @default.
- W2982488225 hasAuthorship W2982488225A5076009908 @default.
- W2982488225 hasBestOaLocation W29824882251 @default.
- W2982488225 hasConcept C119857082 @default.
- W2982488225 hasConcept C141404830 @default.
- W2982488225 hasConcept C153180895 @default.
- W2982488225 hasConcept C154945302 @default.
- W2982488225 hasConcept C162040801 @default.
- W2982488225 hasConcept C169258074 @default.
- W2982488225 hasConcept C41008148 @default.
- W2982488225 hasConcept C45942800 @default.
- W2982488225 hasConcept C46686674 @default.
- W2982488225 hasConcept C95623464 @default.
- W2982488225 hasConceptScore W2982488225C119857082 @default.
- W2982488225 hasConceptScore W2982488225C141404830 @default.
- W2982488225 hasConceptScore W2982488225C153180895 @default.
- W2982488225 hasConceptScore W2982488225C154945302 @default.
- W2982488225 hasConceptScore W2982488225C162040801 @default.
- W2982488225 hasConceptScore W2982488225C169258074 @default.
- W2982488225 hasConceptScore W2982488225C41008148 @default.
- W2982488225 hasConceptScore W2982488225C45942800 @default.
- W2982488225 hasConceptScore W2982488225C46686674 @default.
- W2982488225 hasConceptScore W2982488225C95623464 @default.
- W2982488225 hasLocation W29824882251 @default.
- W2982488225 hasLocation W29824882252 @default.
- W2982488225 hasLocation W29824882253 @default.
- W2982488225 hasLocation W29824882254 @default.
- W2982488225 hasLocation W29824882255 @default.
- W2982488225 hasOpenAccess W2982488225 @default.
- W2982488225 hasPrimaryLocation W29824882251 @default.
- W2982488225 hasRelatedWork W1502951582 @default.
- W2982488225 hasRelatedWork W1570592793 @default.
- W2982488225 hasRelatedWork W2327035729 @default.
- W2982488225 hasRelatedWork W2348748958 @default.
- W2982488225 hasRelatedWork W2385662756 @default.