Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982512126> ?p ?o ?g. }
- W2982512126 endingPage "102967" @default.
- W2982512126 startingPage "102967" @default.
- W2982512126 abstract "The municipal drainage system is a key component of every modern city's infrastructure. However, as the drainage system ages its pipes gradually deteriorate at rates that vary based on the conditions of utilisation (i.e., intrinsic conditions) and other extrinsic factors such as the presence of trees with deep roots or the traffic load above the sewer lines, which collectively can impact the structural integrity of the pipes. As a result, regular monitoring of the drainage system is extremely important since replacement is not only costly, but, more importantly, can disturb the daily routines of citizens. In this respect, closed-circuit television (CCTV) inspection has been widely accepted as an effective inspection technology for buried infrastructure. Since sewer pipes can run for thousands of kilometers underground, cities collect massive amounts of CCTV video footage, the assessment of which is time-consuming and may require a large team of trained technologists. A framework is proposed to realize the development of a real-time automated defect detection system that takes advantage of a deep-learning algorithm. The framework focuses on streamlining the information and data flow, proposing patterns of input and output data processing. With the development of deep learning techniques, a state-of-the-art convolutional neural network (CNN) based object detector, namely YOLOv3 network, has been employed in this research. This algorithm is known to be very efficient in the field of object detection from the perspective of processing speed and accuracy. The model used in this research has been trained with a data set of 4056 samples that contains six types of defects (i.e., broken, hole, deposits, crack, fracture, and root) and one type of construction feature (tap). The performance of the model is validated with a mean average precision (mAP) of 85.37%. The proposed output of the system includes labeled CCTV videos, frames that contain defects, and associated defect information. The labeled video can serve as the benchmark for assessment technologists while the multiple output frames provide an overview of the condition of the sewer pipe." @default.
- W2982512126 created "2019-11-08" @default.
- W2982512126 creator A5006734442 @default.
- W2982512126 creator A5051747562 @default.
- W2982512126 creator A5062914818 @default.
- W2982512126 creator A5068228683 @default.
- W2982512126 creator A5074218113 @default.
- W2982512126 creator A5081760979 @default.
- W2982512126 date "2020-01-01" @default.
- W2982512126 modified "2023-10-16" @default.
- W2982512126 title "A deep learning-based framework for an automated defect detection system for sewer pipes" @default.
- W2982512126 cites W1966174411 @default.
- W2982512126 cites W1975055029 @default.
- W2982512126 cites W1989587560 @default.
- W2982512126 cites W1989910855 @default.
- W2982512126 cites W1992410685 @default.
- W2982512126 cites W1994198993 @default.
- W2982512126 cites W2011226639 @default.
- W2982512126 cites W2013718062 @default.
- W2982512126 cites W2019872178 @default.
- W2982512126 cites W2029400316 @default.
- W2982512126 cites W2031489346 @default.
- W2982512126 cites W2045450279 @default.
- W2982512126 cites W2057221234 @default.
- W2982512126 cites W2069999423 @default.
- W2982512126 cites W2070274273 @default.
- W2982512126 cites W2076387959 @default.
- W2982512126 cites W2079629977 @default.
- W2982512126 cites W2086991944 @default.
- W2982512126 cites W2088282794 @default.
- W2982512126 cites W2093462724 @default.
- W2982512126 cites W2097376151 @default.
- W2982512126 cites W2106238010 @default.
- W2982512126 cites W2109255472 @default.
- W2982512126 cites W2140694235 @default.
- W2982512126 cites W2145295358 @default.
- W2982512126 cites W2170737910 @default.
- W2982512126 cites W2181153634 @default.
- W2982512126 cites W2561081145 @default.
- W2982512126 cites W2792741217 @default.
- W2982512126 cites W2793707857 @default.
- W2982512126 cites W2793956967 @default.
- W2982512126 cites W2809504579 @default.
- W2982512126 cites W2889035772 @default.
- W2982512126 cites W2905163589 @default.
- W2982512126 cites W2909494862 @default.
- W2982512126 cites W2913697492 @default.
- W2982512126 cites W2953888523 @default.
- W2982512126 cites W639708223 @default.
- W2982512126 doi "https://doi.org/10.1016/j.autcon.2019.102967" @default.
- W2982512126 hasPublicationYear "2020" @default.
- W2982512126 type Work @default.
- W2982512126 sameAs 2982512126 @default.
- W2982512126 citedByCount "125" @default.
- W2982512126 countsByYear W29825121262020 @default.
- W2982512126 countsByYear W29825121262021 @default.
- W2982512126 countsByYear W29825121262022 @default.
- W2982512126 countsByYear W29825121262023 @default.
- W2982512126 crossrefType "journal-article" @default.
- W2982512126 hasAuthorship W2982512126A5006734442 @default.
- W2982512126 hasAuthorship W2982512126A5051747562 @default.
- W2982512126 hasAuthorship W2982512126A5062914818 @default.
- W2982512126 hasAuthorship W2982512126A5068228683 @default.
- W2982512126 hasAuthorship W2982512126A5074218113 @default.
- W2982512126 hasAuthorship W2982512126A5081760979 @default.
- W2982512126 hasConcept C108583219 @default.
- W2982512126 hasConcept C121332964 @default.
- W2982512126 hasConcept C127413603 @default.
- W2982512126 hasConcept C153180895 @default.
- W2982512126 hasConcept C154945302 @default.
- W2982512126 hasConcept C157115227 @default.
- W2982512126 hasConcept C168167062 @default.
- W2982512126 hasConcept C202444582 @default.
- W2982512126 hasConcept C26517878 @default.
- W2982512126 hasConcept C2776151529 @default.
- W2982512126 hasConcept C2781238097 @default.
- W2982512126 hasConcept C2992841829 @default.
- W2982512126 hasConcept C33923547 @default.
- W2982512126 hasConcept C38652104 @default.
- W2982512126 hasConcept C41008148 @default.
- W2982512126 hasConcept C76155785 @default.
- W2982512126 hasConcept C79403827 @default.
- W2982512126 hasConcept C81363708 @default.
- W2982512126 hasConcept C9652623 @default.
- W2982512126 hasConcept C97355855 @default.
- W2982512126 hasConceptScore W2982512126C108583219 @default.
- W2982512126 hasConceptScore W2982512126C121332964 @default.
- W2982512126 hasConceptScore W2982512126C127413603 @default.
- W2982512126 hasConceptScore W2982512126C153180895 @default.
- W2982512126 hasConceptScore W2982512126C154945302 @default.
- W2982512126 hasConceptScore W2982512126C157115227 @default.
- W2982512126 hasConceptScore W2982512126C168167062 @default.
- W2982512126 hasConceptScore W2982512126C202444582 @default.
- W2982512126 hasConceptScore W2982512126C26517878 @default.
- W2982512126 hasConceptScore W2982512126C2776151529 @default.
- W2982512126 hasConceptScore W2982512126C2781238097 @default.
- W2982512126 hasConceptScore W2982512126C2992841829 @default.
- W2982512126 hasConceptScore W2982512126C33923547 @default.