Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982664956> ?p ?o ?g. }
- W2982664956 endingPage "105948" @default.
- W2982664956 startingPage "105948" @default.
- W2982664956 abstract "The climate of Siberia is primarily influenced by the Siberian High (SH), although other large-scale atmospheric circulation systems, in particular North Atlantic Oscillation (NAO) storm tracks, play an important role. How variability in the relative strength and trajectory of these climatic systems has affected local to regional palaeoclimatic conditions remains little known. Here, we employ multi-proxy peat core analysis (δ13C, δ15N in Sphagnum, plant macrofossil, pollen, charcoal) from Plotnikovo Mire, part of the Great Vasyugan Mire in western Siberia (Tomsk province, Russia). We provide a high-resolution record of variations in climatic conditions and the biogeochemical fluxes of carbon and nitrogen over the past 2000 years and then discus the link between local climatic conditions and larger scale atmospheric circulation patterns. Our record shows that generally warm and dry conditions prevailed from BC 500 to 500 CE. Warm and wet episodes occurred during the early (800–950 CE) and later (1150–1300 CE) part of the Mediaeval Climate Anomaly (MCA), and were interrupted by a warm and dry mid-MCA phase (1000–1200 CE). Progressively cooler and wetter conditions established from 1400 CE, which became most marked between 1600 and 1850 CE, coincident with the Little Ice Age (LIA). Finally, drying of the mire surface reflects the warming trend of recent decades. We found that C accumulation was greater (90 g C m−2 yr−1) at times of wetter conditions and when Sphagnum was dominant, and lowest (35 g C m−2 yr−1) during periods of mixed vascular plant growth and Sphagnum under drier/unstable hydrological conditions. This peatland has been an active C sink over the past 1500 years, however, its ability to sequester carbon has decreased with recent warming and may continue to decrease with ongoing climatic warming and drying. We hypothesise that generally warm and moist conditions at the study site and over wider Siberia during the MCA could have been linked to a weakening of the Siberian High, which in turn enhanced the ingress of Atlantic moisture-carrying air masses across Siberia. Conversely, a strengthened SH overlapping negative North Atlantic Oscillation (NAO) modes during the LIA, resulted in a longer cold season with a delayed snowmelt and diminished evapotranspiration. This study shows that the interplay of moisture bearing air masses from different origins led to complex local hydroclimate and biogeochemical patterns. However, to resolve the spatio-temporal coherency of such climate variability due to the interaction of different air masses, and therefore better predict future climate changes, a denser network of palaeo-records is needed." @default.
- W2982664956 created "2019-11-08" @default.
- W2982664956 creator A5006858469 @default.
- W2982664956 creator A5013685245 @default.
- W2982664956 creator A5017189304 @default.
- W2982664956 creator A5036724110 @default.
- W2982664956 creator A5040528335 @default.
- W2982664956 creator A5056287839 @default.
- W2982664956 creator A5059992045 @default.
- W2982664956 date "2019-12-01" @default.
- W2982664956 modified "2023-10-18" @default.
- W2982664956 title "2000 years of variability in hydroclimate and carbon accumulation in western Siberia and the relationship with large-scale atmospheric circulation: A multi-proxy peat record" @default.
- W2982664956 cites W1333411 @default.
- W2982664956 cites W1494431475 @default.
- W2982664956 cites W1532675802 @default.
- W2982664956 cites W1658287068 @default.
- W2982664956 cites W1967732457 @default.
- W2982664956 cites W1984644242 @default.
- W2982664956 cites W1987098074 @default.
- W2982664956 cites W1988833082 @default.
- W2982664956 cites W2000733767 @default.
- W2982664956 cites W2003946714 @default.
- W2982664956 cites W2008812654 @default.
- W2982664956 cites W2010860815 @default.
- W2982664956 cites W2017618343 @default.
- W2982664956 cites W2020066054 @default.
- W2982664956 cites W2021684194 @default.
- W2982664956 cites W2022545099 @default.
- W2982664956 cites W2023906603 @default.
- W2982664956 cites W2025674563 @default.
- W2982664956 cites W2034039311 @default.
- W2982664956 cites W2034795620 @default.
- W2982664956 cites W2043514774 @default.
- W2982664956 cites W2048849454 @default.
- W2982664956 cites W2055966334 @default.
- W2982664956 cites W2056681173 @default.
- W2982664956 cites W2060261815 @default.
- W2982664956 cites W2064255834 @default.
- W2982664956 cites W2064913642 @default.
- W2982664956 cites W2064983008 @default.
- W2982664956 cites W2065979655 @default.
- W2982664956 cites W2067329971 @default.
- W2982664956 cites W2072731739 @default.
- W2982664956 cites W2075906126 @default.
- W2982664956 cites W2077895701 @default.
- W2982664956 cites W2088206730 @default.
- W2982664956 cites W2089433454 @default.
- W2982664956 cites W2095175420 @default.
- W2982664956 cites W2096064921 @default.
- W2982664956 cites W2096413199 @default.
- W2982664956 cites W2100636547 @default.
- W2982664956 cites W2108531121 @default.
- W2982664956 cites W2114276712 @default.
- W2982664956 cites W2116196335 @default.
- W2982664956 cites W2120628598 @default.
- W2982664956 cites W2122274237 @default.
- W2982664956 cites W2124498133 @default.
- W2982664956 cites W2130256070 @default.
- W2982664956 cites W2131521626 @default.
- W2982664956 cites W2134720554 @default.
- W2982664956 cites W2135496572 @default.
- W2982664956 cites W2135748555 @default.
- W2982664956 cites W2136881308 @default.
- W2982664956 cites W2139857660 @default.
- W2982664956 cites W2141750914 @default.
- W2982664956 cites W2147308613 @default.
- W2982664956 cites W2152976421 @default.
- W2982664956 cites W2153698741 @default.
- W2982664956 cites W2158885458 @default.
- W2982664956 cites W2159109057 @default.
- W2982664956 cites W2160355101 @default.
- W2982664956 cites W2168545956 @default.
- W2982664956 cites W2171463010 @default.
- W2982664956 cites W2177889850 @default.
- W2982664956 cites W2189386073 @default.
- W2982664956 cites W2253281814 @default.
- W2982664956 cites W2467458760 @default.
- W2982664956 cites W2528576052 @default.
- W2982664956 cites W2569172921 @default.
- W2982664956 cites W2604930874 @default.
- W2982664956 cites W2618061159 @default.
- W2982664956 cites W2626385776 @default.
- W2982664956 cites W2717066453 @default.
- W2982664956 cites W2767593186 @default.
- W2982664956 cites W2789505108 @default.
- W2982664956 cites W2794663980 @default.
- W2982664956 cites W2801044003 @default.
- W2982664956 cites W2884754604 @default.
- W2982664956 cites W2892655517 @default.
- W2982664956 cites W2893055515 @default.
- W2982664956 cites W2902363452 @default.
- W2982664956 cites W2921775912 @default.
- W2982664956 cites W2937388604 @default.
- W2982664956 cites W2966446996 @default.
- W2982664956 cites W4206452353 @default.
- W2982664956 cites W4249751050 @default.
- W2982664956 doi "https://doi.org/10.1016/j.quascirev.2019.105948" @default.
- W2982664956 hasPublicationYear "2019" @default.