Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982679292> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2982679292 abstract "The recent advancements in the field of image processing has led to giving the importance of kinship verification. In this paper, we propose methodology based on Deep Neural Networks (DNN) and Support Vector Machine (SVM) classifier for the blood relation identification of human faces in the images. We examined the best parameters for every feature extraction technique such as: Grey-Level Co-Occurrence Matrix (GLCM), Completed Joint Scale Local Binary Pattern (CJLBP), Alexnet, Resnet on KinFace-I And KinFace-II datasets. The method is made up of two basic stages which are; (1) Feature Extraction (2) Classification. In the proposed method we adopted Alexnet for the process of feature extraction, and the classifier used is support vector machine (SVM). The results obtained using proposed approach gives better results in comparison to many other approaches that were used previously." @default.
- W2982679292 created "2019-11-08" @default.
- W2982679292 creator A5001841271 @default.
- W2982679292 creator A5010118747 @default.
- W2982679292 creator A5015719380 @default.
- W2982679292 creator A5034191972 @default.
- W2982679292 creator A5046674362 @default.
- W2982679292 date "2019-08-01" @default.
- W2982679292 modified "2023-09-25" @default.
- W2982679292 title "Kinship verification using Deep Neural Network Models" @default.
- W2982679292 cites W1241252238 @default.
- W2982679292 cites W1500895378 @default.
- W2982679292 cites W1901295546 @default.
- W2982679292 cites W1998230826 @default.
- W2982679292 cites W2079742827 @default.
- W2982679292 cites W2087681821 @default.
- W2982679292 cites W2132886138 @default.
- W2982679292 cites W2135280105 @default.
- W2982679292 cites W2164598857 @default.
- W2982679292 cites W2184983556 @default.
- W2982679292 cites W2244142460 @default.
- W2982679292 cites W2251848467 @default.
- W2982679292 cites W2323684557 @default.
- W2982679292 cites W2512291285 @default.
- W2982679292 cites W2599197737 @default.
- W2982679292 cites W2792481260 @default.
- W2982679292 cites W2921765175 @default.
- W2982679292 doi "https://doi.org/10.1109/raee.2019.8886969" @default.
- W2982679292 hasPublicationYear "2019" @default.
- W2982679292 type Work @default.
- W2982679292 sameAs 2982679292 @default.
- W2982679292 citedByCount "4" @default.
- W2982679292 countsByYear W29826792922021 @default.
- W2982679292 countsByYear W29826792922022 @default.
- W2982679292 countsByYear W29826792922023 @default.
- W2982679292 crossrefType "proceedings-article" @default.
- W2982679292 hasAuthorship W2982679292A5001841271 @default.
- W2982679292 hasAuthorship W2982679292A5010118747 @default.
- W2982679292 hasAuthorship W2982679292A5015719380 @default.
- W2982679292 hasAuthorship W2982679292A5034191972 @default.
- W2982679292 hasAuthorship W2982679292A5046674362 @default.
- W2982679292 hasConcept C115961682 @default.
- W2982679292 hasConcept C119857082 @default.
- W2982679292 hasConcept C12267149 @default.
- W2982679292 hasConcept C153180895 @default.
- W2982679292 hasConcept C154945302 @default.
- W2982679292 hasConcept C41008148 @default.
- W2982679292 hasConcept C50644808 @default.
- W2982679292 hasConcept C52622490 @default.
- W2982679292 hasConcept C53533937 @default.
- W2982679292 hasConcept C66905080 @default.
- W2982679292 hasConcept C87335442 @default.
- W2982679292 hasConcept C95623464 @default.
- W2982679292 hasConceptScore W2982679292C115961682 @default.
- W2982679292 hasConceptScore W2982679292C119857082 @default.
- W2982679292 hasConceptScore W2982679292C12267149 @default.
- W2982679292 hasConceptScore W2982679292C153180895 @default.
- W2982679292 hasConceptScore W2982679292C154945302 @default.
- W2982679292 hasConceptScore W2982679292C41008148 @default.
- W2982679292 hasConceptScore W2982679292C50644808 @default.
- W2982679292 hasConceptScore W2982679292C52622490 @default.
- W2982679292 hasConceptScore W2982679292C53533937 @default.
- W2982679292 hasConceptScore W2982679292C66905080 @default.
- W2982679292 hasConceptScore W2982679292C87335442 @default.
- W2982679292 hasConceptScore W2982679292C95623464 @default.
- W2982679292 hasLocation W29826792921 @default.
- W2982679292 hasOpenAccess W2982679292 @default.
- W2982679292 hasPrimaryLocation W29826792921 @default.
- W2982679292 hasRelatedWork W1964805666 @default.
- W2982679292 hasRelatedWork W1974108376 @default.
- W2982679292 hasRelatedWork W2022201514 @default.
- W2982679292 hasRelatedWork W2080932543 @default.
- W2982679292 hasRelatedWork W2275058042 @default.
- W2982679292 hasRelatedWork W2348964713 @default.
- W2982679292 hasRelatedWork W3007885410 @default.
- W2982679292 hasRelatedWork W4285281467 @default.
- W2982679292 hasRelatedWork W4287871651 @default.
- W2982679292 hasRelatedWork W2345184372 @default.
- W2982679292 isParatext "false" @default.
- W2982679292 isRetracted "false" @default.
- W2982679292 magId "2982679292" @default.
- W2982679292 workType "article" @default.