Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982701314> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2982701314 abstract "Knowing where to park in advance is a most wished feature by many drivers. In recent years, many research efforts have been spent to analyse massive amount of parking information, to learn availability trends and thus to predict, within a Parking Guidance and Information (PGI) system, where there is the highest chance to find free parking spaces. The most of these solutions exploits raw data coming from stationary sensors or crowd-sensed by mobile probes. In both the cases, these massive amounts of data present a high level of noise, which heavily affects the quality of availability predictions. In a previous work we demonstrated that a 2-step approach, based on machine learning techniques to filter out noise, improves the quality of parking availability predictions over raw data. In this paper we propose a further advancement of that approach, by including a technique to perform such noise filtering in real-time, with reduced computational efforts. The proposal has been empirically tested on a real-world dataset of on-street parking information from the SFpark project, and compared against a regression model based on SVR, to perform parking availability predictions. Results show that the predictions obtained with the new on-line approach show a better balance between average and entropy in errors distribution with respect to the use of raw data coming from the sensors." @default.
- W2982701314 created "2019-11-08" @default.
- W2982701314 creator A5000104294 @default.
- W2982701314 creator A5055939080 @default.
- W2982701314 creator A5074514321 @default.
- W2982701314 date "2019-06-01" @default.
- W2982701314 modified "2023-09-25" @default.
- W2982701314 title "On-Line Filtering of On-Street Parking Data to Improve Availability Predictions" @default.
- W2982701314 cites W1615615219 @default.
- W2982701314 cites W1995085137 @default.
- W2982701314 cites W2002639996 @default.
- W2982701314 cites W2009985677 @default.
- W2982701314 cites W2090659095 @default.
- W2982701314 cites W2091453093 @default.
- W2982701314 cites W2114193021 @default.
- W2982701314 cites W2143971652 @default.
- W2982701314 cites W2152412884 @default.
- W2982701314 cites W2153635508 @default.
- W2982701314 cites W2170735442 @default.
- W2982701314 cites W2171147847 @default.
- W2982701314 cites W2489627439 @default.
- W2982701314 cites W2551956335 @default.
- W2982701314 cites W2604939319 @default.
- W2982701314 cites W2606393334 @default.
- W2982701314 cites W2742953624 @default.
- W2982701314 cites W2767149267 @default.
- W2982701314 cites W2792244604 @default.
- W2982701314 cites W2811245417 @default.
- W2982701314 cites W2903667072 @default.
- W2982701314 cites W3023520985 @default.
- W2982701314 doi "https://doi.org/10.1109/mtits.2019.8883375" @default.
- W2982701314 hasPublicationYear "2019" @default.
- W2982701314 type Work @default.
- W2982701314 sameAs 2982701314 @default.
- W2982701314 citedByCount "6" @default.
- W2982701314 countsByYear W29827013142021 @default.
- W2982701314 countsByYear W29827013142022 @default.
- W2982701314 countsByYear W29827013142023 @default.
- W2982701314 crossrefType "proceedings-article" @default.
- W2982701314 hasAuthorship W2982701314A5000104294 @default.
- W2982701314 hasAuthorship W2982701314A5055939080 @default.
- W2982701314 hasAuthorship W2982701314A5074514321 @default.
- W2982701314 hasConcept C127413603 @default.
- W2982701314 hasConcept C198352243 @default.
- W2982701314 hasConcept C22212356 @default.
- W2982701314 hasConcept C2524010 @default.
- W2982701314 hasConcept C33923547 @default.
- W2982701314 hasConcept C41008148 @default.
- W2982701314 hasConceptScore W2982701314C127413603 @default.
- W2982701314 hasConceptScore W2982701314C198352243 @default.
- W2982701314 hasConceptScore W2982701314C22212356 @default.
- W2982701314 hasConceptScore W2982701314C2524010 @default.
- W2982701314 hasConceptScore W2982701314C33923547 @default.
- W2982701314 hasConceptScore W2982701314C41008148 @default.
- W2982701314 hasLocation W29827013141 @default.
- W2982701314 hasOpenAccess W2982701314 @default.
- W2982701314 hasPrimaryLocation W29827013141 @default.
- W2982701314 hasRelatedWork W1507467633 @default.
- W2982701314 hasRelatedWork W2352361725 @default.
- W2982701314 hasRelatedWork W2353291393 @default.
- W2982701314 hasRelatedWork W2353757336 @default.
- W2982701314 hasRelatedWork W2370071057 @default.
- W2982701314 hasRelatedWork W2375451149 @default.
- W2982701314 hasRelatedWork W2380358681 @default.
- W2982701314 hasRelatedWork W2383634644 @default.
- W2982701314 hasRelatedWork W2384972985 @default.
- W2982701314 hasRelatedWork W3097016349 @default.
- W2982701314 isParatext "false" @default.
- W2982701314 isRetracted "false" @default.
- W2982701314 magId "2982701314" @default.
- W2982701314 workType "article" @default.