Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982760504> ?p ?o ?g. }
- W2982760504 endingPage "e0224934" @default.
- W2982760504 startingPage "e0224934" @default.
- W2982760504 abstract "Fog computing (FC) is an evolving computing technology that operates in a distributed environment. FC aims to bring cloud computing features close to edge devices. The approach is expected to fulfill the minimum latency requirement for healthcare Internet-of-Things (IoT) devices. Healthcare IoT devices generate various volumes of healthcare data. This large volume of data results in high data traffic that causes network congestion and high latency. An increase in round-trip time delay owing to large data transmission and large hop counts between IoTs and cloud servers render healthcare data meaningless and inadequate for end-users. Time-sensitive healthcare applications require real-time data. Traditional cloud servers cannot fulfill the minimum latency demands of healthcare IoT devices and end-users. Therefore, communication latency, computation latency, and network latency must be reduced for IoT data transmission. FC affords the storage, processing, and analysis of data from cloud computing to a network edge to reduce high latency. A novel solution for the abovementioned problem is proposed herein. It includes an analytical model and a hybrid fuzzy-based reinforcement learning algorithm in an FC environment. The aim is to reduce high latency among healthcare IoTs, end-users, and cloud servers. The proposed intelligent FC analytical model and algorithm use a fuzzy inference system combined with reinforcement learning and neural network evolution strategies for data packet allocation and selection in an IoT–FC environment. The approach is tested on simulators iFogSim (Net-Beans) and Spyder (Python). The obtained results indicated the better performance of the proposed approach compared with existing methods." @default.
- W2982760504 created "2019-11-22" @default.
- W2982760504 creator A5043301510 @default.
- W2982760504 creator A5058893452 @default.
- W2982760504 creator A5070932522 @default.
- W2982760504 creator A5079884366 @default.
- W2982760504 creator A5086083861 @default.
- W2982760504 date "2019-11-13" @default.
- W2982760504 modified "2023-10-17" @default.
- W2982760504 title "An analytical model to minimize the latency in healthcare internet-of-things in fog computing environment" @default.
- W2982760504 cites W1584443301 @default.
- W2982760504 cites W1989164753 @default.
- W2982760504 cites W2003117117 @default.
- W2982760504 cites W2039759229 @default.
- W2982760504 cites W2049861335 @default.
- W2982760504 cites W2050206309 @default.
- W2982760504 cites W2083533476 @default.
- W2982760504 cites W2108282337 @default.
- W2982760504 cites W2114623221 @default.
- W2982760504 cites W2154065339 @default.
- W2982760504 cites W2155565350 @default.
- W2982760504 cites W2198252115 @default.
- W2982760504 cites W2215576337 @default.
- W2982760504 cites W2283728554 @default.
- W2982760504 cites W2296033070 @default.
- W2982760504 cites W2328690729 @default.
- W2982760504 cites W2573834517 @default.
- W2982760504 cites W2586923239 @default.
- W2982760504 cites W2592843051 @default.
- W2982760504 cites W2606297994 @default.
- W2982760504 cites W2609731728 @default.
- W2982760504 cites W2612225380 @default.
- W2982760504 cites W2614052420 @default.
- W2982760504 cites W2615777654 @default.
- W2982760504 cites W2740289797 @default.
- W2982760504 cites W2747744888 @default.
- W2982760504 cites W2748166927 @default.
- W2982760504 cites W2751308120 @default.
- W2982760504 cites W2754027415 @default.
- W2982760504 cites W2754987233 @default.
- W2982760504 cites W2755200181 @default.
- W2982760504 cites W2758639788 @default.
- W2982760504 cites W2765776605 @default.
- W2982760504 cites W2766401293 @default.
- W2982760504 cites W2783804091 @default.
- W2982760504 cites W2790257945 @default.
- W2982760504 cites W2802349643 @default.
- W2982760504 cites W2808560727 @default.
- W2982760504 cites W2809963016 @default.
- W2982760504 cites W2889043402 @default.
- W2982760504 cites W2901795350 @default.
- W2982760504 cites W2910396952 @default.
- W2982760504 cites W2916048747 @default.
- W2982760504 cites W2921939364 @default.
- W2982760504 cites W2945600017 @default.
- W2982760504 cites W2945617360 @default.
- W2982760504 cites W2947397189 @default.
- W2982760504 cites W2953904117 @default.
- W2982760504 cites W2954286747 @default.
- W2982760504 cites W2964081981 @default.
- W2982760504 cites W2982530739 @default.
- W2982760504 cites W4241901489 @default.
- W2982760504 doi "https://doi.org/10.1371/journal.pone.0224934" @default.
- W2982760504 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6853307" @default.
- W2982760504 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31721807" @default.
- W2982760504 hasPublicationYear "2019" @default.
- W2982760504 type Work @default.
- W2982760504 sameAs 2982760504 @default.
- W2982760504 citedByCount "59" @default.
- W2982760504 countsByYear W29827605042020 @default.
- W2982760504 countsByYear W29827605042021 @default.
- W2982760504 countsByYear W29827605042022 @default.
- W2982760504 countsByYear W29827605042023 @default.
- W2982760504 crossrefType "journal-article" @default.
- W2982760504 hasAuthorship W2982760504A5043301510 @default.
- W2982760504 hasAuthorship W2982760504A5058893452 @default.
- W2982760504 hasAuthorship W2982760504A5070932522 @default.
- W2982760504 hasAuthorship W2982760504A5079884366 @default.
- W2982760504 hasAuthorship W2982760504A5086083861 @default.
- W2982760504 hasBestOaLocation W29827605041 @default.
- W2982760504 hasConcept C110875604 @default.
- W2982760504 hasConcept C111919701 @default.
- W2982760504 hasConcept C120314980 @default.
- W2982760504 hasConcept C138236772 @default.
- W2982760504 hasConcept C154945302 @default.
- W2982760504 hasConcept C158379750 @default.
- W2982760504 hasConcept C2778456923 @default.
- W2982760504 hasConcept C31258907 @default.
- W2982760504 hasConcept C41008148 @default.
- W2982760504 hasConcept C76155785 @default.
- W2982760504 hasConcept C79403827 @default.
- W2982760504 hasConcept C79974875 @default.
- W2982760504 hasConcept C82876162 @default.
- W2982760504 hasConcept C93996380 @default.
- W2982760504 hasConcept C97541855 @default.
- W2982760504 hasConceptScore W2982760504C110875604 @default.
- W2982760504 hasConceptScore W2982760504C111919701 @default.
- W2982760504 hasConceptScore W2982760504C120314980 @default.