Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982837328> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2982837328 endingPage "40" @default.
- W2982837328 startingPage "29" @default.
- W2982837328 abstract "Cyber-physical manufacturing systems (CPMS) can be defined by the integration of control, network communication, and computing with a physical manufacturing process. In this work, we present a hybrid model of CPMS combining sensor data, context information, and expert knowledge. We used the identification of global operational states and a multimodel framework to improve anomaly detection and diagnosis. The anomaly detection is based on context-sensitive adaptive threshold limits. Root cause diagnosis is based on classification models and expert knowledge. The proposed approach was implemented using the Internet of Things (IoT) to extract data from a computer numerical control machine. Results showed that using a context-sensitive modeling strategy allowed to combine physics-based and data-driven models for residual analysis to detect an anomaly in the part, machine, or process. The identification of root cause was improved by adding context information in classification models to identify worn or broken tools and wrong material. Note to Practitioners—Anomaly detection and diagnosis of manufacturing equipment is a complex problem. Some of the challenges are complex machine dynamics and nonstationary operating conditions. This paper describes a framework for modeling manufacturing equipment using a combination of sensor data, context information, and system knowledge. The proposed modeling framework is used to improve anomaly detection for diagnostics using a context-sensitive strategy. This work aims to support more effective maintenance actions by identifying problems in the machine, part, or process. The modeling and anomaly detection strategy was used to identify anomalies in computer numerical control machines and can be extended to other equipment on the plant floor." @default.
- W2982837328 created "2019-11-22" @default.
- W2982837328 creator A5025730901 @default.
- W2982837328 creator A5045385831 @default.
- W2982837328 creator A5068437513 @default.
- W2982837328 creator A5084847741 @default.
- W2982837328 date "2020-01-01" @default.
- W2982837328 modified "2023-10-16" @default.
- W2982837328 title "Context-Sensitive Modeling and Analysis of Cyber-Physical Manufacturing Systems for Anomaly Detection and Diagnosis" @default.
- W2982837328 cites W182005461 @default.
- W2982837328 cites W2002803086 @default.
- W2982837328 cites W2003500738 @default.
- W2982837328 cites W2040449481 @default.
- W2982837328 cites W2044848461 @default.
- W2982837328 cites W2055616403 @default.
- W2982837328 cites W2071509387 @default.
- W2982837328 cites W2094396763 @default.
- W2982837328 cites W2097747115 @default.
- W2982837328 cites W2102571511 @default.
- W2982837328 cites W2104483371 @default.
- W2982837328 cites W2107074288 @default.
- W2982837328 cites W2120184298 @default.
- W2982837328 cites W2121519505 @default.
- W2982837328 cites W2147769603 @default.
- W2982837328 cites W2149505323 @default.
- W2982837328 cites W2168892251 @default.
- W2982837328 cites W2263584683 @default.
- W2982837328 cites W2419225421 @default.
- W2982837328 cites W2483430316 @default.
- W2982837328 cites W2524096432 @default.
- W2982837328 cites W2624149722 @default.
- W2982837328 cites W2782605947 @default.
- W2982837328 cites W4234482113 @default.
- W2982837328 cites W4241115065 @default.
- W2982837328 doi "https://doi.org/10.1109/tase.2019.2918562" @default.
- W2982837328 hasPublicationYear "2020" @default.
- W2982837328 type Work @default.
- W2982837328 sameAs 2982837328 @default.
- W2982837328 citedByCount "26" @default.
- W2982837328 countsByYear W29828373282018 @default.
- W2982837328 countsByYear W29828373282020 @default.
- W2982837328 countsByYear W29828373282021 @default.
- W2982837328 countsByYear W29828373282022 @default.
- W2982837328 countsByYear W29828373282023 @default.
- W2982837328 crossrefType "journal-article" @default.
- W2982837328 hasAuthorship W2982837328A5025730901 @default.
- W2982837328 hasAuthorship W2982837328A5045385831 @default.
- W2982837328 hasAuthorship W2982837328A5068437513 @default.
- W2982837328 hasAuthorship W2982837328A5084847741 @default.
- W2982837328 hasBestOaLocation W29828373281 @default.
- W2982837328 hasConcept C111919701 @default.
- W2982837328 hasConcept C121332964 @default.
- W2982837328 hasConcept C124101348 @default.
- W2982837328 hasConcept C127413603 @default.
- W2982837328 hasConcept C12997251 @default.
- W2982837328 hasConcept C151730666 @default.
- W2982837328 hasConcept C179768478 @default.
- W2982837328 hasConcept C200601418 @default.
- W2982837328 hasConcept C201995342 @default.
- W2982837328 hasConcept C26873012 @default.
- W2982837328 hasConcept C2779343474 @default.
- W2982837328 hasConcept C41008148 @default.
- W2982837328 hasConcept C739882 @default.
- W2982837328 hasConcept C86803240 @default.
- W2982837328 hasConceptScore W2982837328C111919701 @default.
- W2982837328 hasConceptScore W2982837328C121332964 @default.
- W2982837328 hasConceptScore W2982837328C124101348 @default.
- W2982837328 hasConceptScore W2982837328C127413603 @default.
- W2982837328 hasConceptScore W2982837328C12997251 @default.
- W2982837328 hasConceptScore W2982837328C151730666 @default.
- W2982837328 hasConceptScore W2982837328C179768478 @default.
- W2982837328 hasConceptScore W2982837328C200601418 @default.
- W2982837328 hasConceptScore W2982837328C201995342 @default.
- W2982837328 hasConceptScore W2982837328C26873012 @default.
- W2982837328 hasConceptScore W2982837328C2779343474 @default.
- W2982837328 hasConceptScore W2982837328C41008148 @default.
- W2982837328 hasConceptScore W2982837328C739882 @default.
- W2982837328 hasConceptScore W2982837328C86803240 @default.
- W2982837328 hasFunder F4320335353 @default.
- W2982837328 hasIssue "1" @default.
- W2982837328 hasLocation W29828373281 @default.
- W2982837328 hasOpenAccess W2982837328 @default.
- W2982837328 hasPrimaryLocation W29828373281 @default.
- W2982837328 hasRelatedWork W2493427309 @default.
- W2982837328 hasRelatedWork W3046060513 @default.
- W2982837328 hasRelatedWork W3155756886 @default.
- W2982837328 hasRelatedWork W3207827401 @default.
- W2982837328 hasRelatedWork W4206723667 @default.
- W2982837328 hasRelatedWork W4221140303 @default.
- W2982837328 hasRelatedWork W4281381641 @default.
- W2982837328 hasRelatedWork W4297790321 @default.
- W2982837328 hasRelatedWork W4300768748 @default.
- W2982837328 hasRelatedWork W4313034426 @default.
- W2982837328 hasVolume "17" @default.
- W2982837328 isParatext "false" @default.
- W2982837328 isRetracted "false" @default.
- W2982837328 magId "2982837328" @default.
- W2982837328 workType "article" @default.