Matches in SemOpenAlex for { <https://semopenalex.org/work/W2982912951> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2982912951 endingPage "164875" @default.
- W2982912951 startingPage "164867" @default.
- W2982912951 abstract "To further the application of artificial intelligence techniques in agriculture, this study proposes an approach based on deep neural network to estimate the live weights of pigs in saw stalls. We design a neural network that uses the back of pigs in top-view depth images as the input and outputs the pig weights estimates. The proposed network, which is based on a Faster-RCNN network with an added regressive branch, integrates the pig detection and live weights regressive network into an end-to-end network. It simultaneously performs pig recognition, location and pig weights estimate. Alternating the training method optimises the proposed network. Image simulation using circles with various overlapping areas and radii is used to prove the efficacy of the proposed network. When the overlap area is greater than 30% of the total area, the proposed network is invalid. Real farm experiments were conducted for three months to construct the back of pigs in top-view depth image data set to train the proposed network. The test results not only prove the relationship between size of back area and pig weights, but also verify that the proposed neural network can accurately estimate pig weights. The study will promote the application of intelligent technique in the livestock farming, and provides some references for intelligent weighing researchers." @default.
- W2982912951 created "2019-11-22" @default.
- W2982912951 creator A5019110336 @default.
- W2982912951 creator A5044069043 @default.
- W2982912951 creator A5088835989 @default.
- W2982912951 date "2019-01-01" @default.
- W2982912951 modified "2023-10-16" @default.
- W2982912951 title "An Intelligent Pig Weights Estimate Method Based on Deep Learning in Sow Stall Environments" @default.
- W2982912951 cites W1536680647 @default.
- W2982912951 cites W1891628293 @default.
- W2982912951 cites W1986336477 @default.
- W2982912951 cites W2007857919 @default.
- W2982912951 cites W2018191020 @default.
- W2982912951 cites W2020611861 @default.
- W2982912951 cites W2029988511 @default.
- W2982912951 cites W2088798586 @default.
- W2982912951 cites W2091991228 @default.
- W2982912951 cites W2113637157 @default.
- W2982912951 cites W2124053449 @default.
- W2982912951 cites W2522379694 @default.
- W2982912951 cites W2527150209 @default.
- W2982912951 cites W2752912755 @default.
- W2982912951 cites W2775186784 @default.
- W2982912951 cites W2791489312 @default.
- W2982912951 cites W2794578160 @default.
- W2982912951 cites W2886201707 @default.
- W2982912951 cites W2894984663 @default.
- W2982912951 cites W2898312960 @default.
- W2982912951 cites W2899609705 @default.
- W2982912951 cites W639708223 @default.
- W2982912951 cites W760806350 @default.
- W2982912951 doi "https://doi.org/10.1109/access.2019.2953099" @default.
- W2982912951 hasPublicationYear "2019" @default.
- W2982912951 type Work @default.
- W2982912951 sameAs 2982912951 @default.
- W2982912951 citedByCount "27" @default.
- W2982912951 countsByYear W29829129512020 @default.
- W2982912951 countsByYear W29829129512021 @default.
- W2982912951 countsByYear W29829129512022 @default.
- W2982912951 countsByYear W29829129512023 @default.
- W2982912951 crossrefType "journal-article" @default.
- W2982912951 hasAuthorship W2982912951A5019110336 @default.
- W2982912951 hasAuthorship W2982912951A5044069043 @default.
- W2982912951 hasAuthorship W2982912951A5088835989 @default.
- W2982912951 hasBestOaLocation W29829129511 @default.
- W2982912951 hasConcept C153180895 @default.
- W2982912951 hasConcept C154945302 @default.
- W2982912951 hasConcept C41008148 @default.
- W2982912951 hasConcept C50644808 @default.
- W2982912951 hasConceptScore W2982912951C153180895 @default.
- W2982912951 hasConceptScore W2982912951C154945302 @default.
- W2982912951 hasConceptScore W2982912951C41008148 @default.
- W2982912951 hasConceptScore W2982912951C50644808 @default.
- W2982912951 hasFunder F4320321001 @default.
- W2982912951 hasLocation W29829129511 @default.
- W2982912951 hasOpenAccess W2982912951 @default.
- W2982912951 hasPrimaryLocation W29829129511 @default.
- W2982912951 hasRelatedWork W2033914206 @default.
- W2982912951 hasRelatedWork W2042327336 @default.
- W2982912951 hasRelatedWork W2046077695 @default.
- W2982912951 hasRelatedWork W2146076056 @default.
- W2982912951 hasRelatedWork W2163831990 @default.
- W2982912951 hasRelatedWork W2378160586 @default.
- W2982912951 hasRelatedWork W2386387936 @default.
- W2982912951 hasRelatedWork W2996038082 @default.
- W2982912951 hasRelatedWork W3003836766 @default.
- W2982912951 hasRelatedWork W3047965787 @default.
- W2982912951 hasVolume "7" @default.
- W2982912951 isParatext "false" @default.
- W2982912951 isRetracted "false" @default.
- W2982912951 magId "2982912951" @default.
- W2982912951 workType "article" @default.