Matches in SemOpenAlex for { <https://semopenalex.org/work/W2983188247> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2983188247 abstract "Every investor is hoping to get a high rate of return for their portfolio with as little risk as possible, so investors try to balance the performance and risk of the portfolio through diversification. Diversification is a technique to improve the performance of the portfolio by minimizing the risk of the portfolio. The motivation of this research is to investigate the portfolio selection strategies through clustering method and application of the genetic algorithm. Clustering is used to diversify the portfolio by forming a homogenous cluster with respect to their financial ratios. Seven financial ratio characteristics that used are Earning Per Share (EPS), Price Earnings Ratio (PER), Price / Earnings Growth (PEG), Return of Equity (ROE), Debt Equity Ratio (DER), Current Ratio (CR) and Profit Margin (PM). Density-based Spatial Clustering of Application with Noise (DBSCAN) used as clustering method, then Genetic Algorithm (GA) used for portfolio selection. GA automatically select the optimum risk and return portfolio based on the clustered stocks by deciding which assets and their respective weights included in the portfolio. The GA constructed based on Mean Variance Cardinality Constrained Portfolio Optimization (MVCCPO) model and called a Constrained Genetic Algorithm. The method successfully gives a higher level of return (41.05 %) and Sharpe ratio (32.67) compared to the S&P 500 index in the same period of time (12.34 % and 2.7 respectively)." @default.
- W2983188247 created "2019-11-22" @default.
- W2983188247 creator A5019926581 @default.
- W2983188247 creator A5024158362 @default.
- W2983188247 creator A5050665066 @default.
- W2983188247 date "2019-01-01" @default.
- W2983188247 modified "2023-10-14" @default.
- W2983188247 title "Implementation of density-based spatial clustering of application with noise and genetic algorithm in portfolio optimization with constraint" @default.
- W2983188247 cites W1498755550 @default.
- W2983188247 cites W2085508910 @default.
- W2983188247 cites W2151237529 @default.
- W2983188247 cites W2244192940 @default.
- W2983188247 cites W4232474910 @default.
- W2983188247 doi "https://doi.org/10.1063/1.5132453" @default.
- W2983188247 hasPublicationYear "2019" @default.
- W2983188247 type Work @default.
- W2983188247 sameAs 2983188247 @default.
- W2983188247 citedByCount "2" @default.
- W2983188247 countsByYear W29831882472020 @default.
- W2983188247 countsByYear W29831882472023 @default.
- W2983188247 crossrefType "proceedings-article" @default.
- W2983188247 hasAuthorship W2983188247A5019926581 @default.
- W2983188247 hasAuthorship W2983188247A5024158362 @default.
- W2983188247 hasAuthorship W2983188247A5050665066 @default.
- W2983188247 hasBestOaLocation W29831882471 @default.
- W2983188247 hasConcept C106159729 @default.
- W2983188247 hasConcept C119857082 @default.
- W2983188247 hasConcept C126255220 @default.
- W2983188247 hasConcept C139938925 @default.
- W2983188247 hasConcept C144133560 @default.
- W2983188247 hasConcept C149782125 @default.
- W2983188247 hasConcept C162324750 @default.
- W2983188247 hasConcept C162853370 @default.
- W2983188247 hasConcept C180916674 @default.
- W2983188247 hasConcept C202655437 @default.
- W2983188247 hasConcept C21099588 @default.
- W2983188247 hasConcept C2780821815 @default.
- W2983188247 hasConcept C33923547 @default.
- W2983188247 hasConcept C41008148 @default.
- W2983188247 hasConcept C67051015 @default.
- W2983188247 hasConcept C73555534 @default.
- W2983188247 hasConceptScore W2983188247C106159729 @default.
- W2983188247 hasConceptScore W2983188247C119857082 @default.
- W2983188247 hasConceptScore W2983188247C126255220 @default.
- W2983188247 hasConceptScore W2983188247C139938925 @default.
- W2983188247 hasConceptScore W2983188247C144133560 @default.
- W2983188247 hasConceptScore W2983188247C149782125 @default.
- W2983188247 hasConceptScore W2983188247C162324750 @default.
- W2983188247 hasConceptScore W2983188247C162853370 @default.
- W2983188247 hasConceptScore W2983188247C180916674 @default.
- W2983188247 hasConceptScore W2983188247C202655437 @default.
- W2983188247 hasConceptScore W2983188247C21099588 @default.
- W2983188247 hasConceptScore W2983188247C2780821815 @default.
- W2983188247 hasConceptScore W2983188247C33923547 @default.
- W2983188247 hasConceptScore W2983188247C41008148 @default.
- W2983188247 hasConceptScore W2983188247C67051015 @default.
- W2983188247 hasConceptScore W2983188247C73555534 @default.
- W2983188247 hasLocation W29831882471 @default.
- W2983188247 hasOpenAccess W2983188247 @default.
- W2983188247 hasPrimaryLocation W29831882471 @default.
- W2983188247 hasRelatedWork W1537374034 @default.
- W2983188247 hasRelatedWork W2030197473 @default.
- W2983188247 hasRelatedWork W2076582919 @default.
- W2983188247 hasRelatedWork W2993371194 @default.
- W2983188247 hasRelatedWork W3109999445 @default.
- W2983188247 hasRelatedWork W3122004259 @default.
- W2983188247 hasRelatedWork W3197600018 @default.
- W2983188247 hasRelatedWork W3199983070 @default.
- W2983188247 hasRelatedWork W4280625223 @default.
- W2983188247 hasRelatedWork W4328095085 @default.
- W2983188247 isParatext "false" @default.
- W2983188247 isRetracted "false" @default.
- W2983188247 magId "2983188247" @default.
- W2983188247 workType "article" @default.