Matches in SemOpenAlex for { <https://semopenalex.org/work/W2983198246> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2983198246 abstract "In this thesis we compare experimentally several machine learning methods, for classification. The term online refers to the fact that the classifier examines the training examples one by one and not as a whole dataset, and additionally the classifier's decision is irrevocable. We evaluate their performance on three different datasets. Specifically, the learning methods used are Perceptron, Support Vector Machines (SVMs), Winnow, Logistic Regression (LR), along with kernel methods for Perceptron and SVM. The datasets used cover real-life application fields. The first dataset is used to predict spam e-mails, the second for cancellation of shipment and the third for constant surveillance of people suffering epilepsy. After transforming the datasets to the desired form, we implement the said methods and algorithms from scratch using Python, evaluate the models created and present our results. Our findings are summarized as follows. First, the kernel methods do not outperform the non-kernel ones, due to the lack of quantity of training examples. Second, the Winnow performance was poor, probably due to its lack of negative correlation. Finally, we find that the deviation between the models we created, and the corresponding static models created by Python's sk-learn, was insubstantial, therefore proving our models' performance was satisfactory." @default.
- W2983198246 created "2019-11-22" @default.
- W2983198246 creator A5042184994 @default.
- W2983198246 date "2019-01-01" @default.
- W2983198246 modified "2023-09-27" @default.
- W2983198246 title "Experimental evaluation of online classification models" @default.
- W2983198246 hasPublicationYear "2019" @default.
- W2983198246 type Work @default.
- W2983198246 sameAs 2983198246 @default.
- W2983198246 citedByCount "0" @default.
- W2983198246 crossrefType "dissertation" @default.
- W2983198246 hasAuthorship W2983198246A5042184994 @default.
- W2983198246 hasConcept C111919701 @default.
- W2983198246 hasConcept C119857082 @default.
- W2983198246 hasConcept C12267149 @default.
- W2983198246 hasConcept C153180895 @default.
- W2983198246 hasConcept C154945302 @default.
- W2983198246 hasConcept C179717631 @default.
- W2983198246 hasConcept C41008148 @default.
- W2983198246 hasConcept C50644808 @default.
- W2983198246 hasConcept C519991488 @default.
- W2983198246 hasConcept C60908668 @default.
- W2983198246 hasConcept C95623464 @default.
- W2983198246 hasConceptScore W2983198246C111919701 @default.
- W2983198246 hasConceptScore W2983198246C119857082 @default.
- W2983198246 hasConceptScore W2983198246C12267149 @default.
- W2983198246 hasConceptScore W2983198246C153180895 @default.
- W2983198246 hasConceptScore W2983198246C154945302 @default.
- W2983198246 hasConceptScore W2983198246C179717631 @default.
- W2983198246 hasConceptScore W2983198246C41008148 @default.
- W2983198246 hasConceptScore W2983198246C50644808 @default.
- W2983198246 hasConceptScore W2983198246C519991488 @default.
- W2983198246 hasConceptScore W2983198246C60908668 @default.
- W2983198246 hasConceptScore W2983198246C95623464 @default.
- W2983198246 hasLocation W29831982461 @default.
- W2983198246 hasOpenAccess W2983198246 @default.
- W2983198246 hasPrimaryLocation W29831982461 @default.
- W2983198246 hasRelatedWork W1563002973 @default.
- W2983198246 hasRelatedWork W1601101968 @default.
- W2983198246 hasRelatedWork W1608203026 @default.
- W2983198246 hasRelatedWork W1608569800 @default.
- W2983198246 hasRelatedWork W1970511722 @default.
- W2983198246 hasRelatedWork W1970959042 @default.
- W2983198246 hasRelatedWork W1973096686 @default.
- W2983198246 hasRelatedWork W2003927891 @default.
- W2983198246 hasRelatedWork W2137377746 @default.
- W2983198246 hasRelatedWork W2282339125 @default.
- W2983198246 hasRelatedWork W2463280635 @default.
- W2983198246 hasRelatedWork W2588033886 @default.
- W2983198246 hasRelatedWork W2887186013 @default.
- W2983198246 hasRelatedWork W2901295214 @default.
- W2983198246 hasRelatedWork W2902777483 @default.
- W2983198246 hasRelatedWork W3126555995 @default.
- W2983198246 hasRelatedWork W3154172529 @default.
- W2983198246 hasRelatedWork W3158115238 @default.
- W2983198246 hasRelatedWork W3180364752 @default.
- W2983198246 hasRelatedWork W84600290 @default.
- W2983198246 isParatext "false" @default.
- W2983198246 isRetracted "false" @default.
- W2983198246 magId "2983198246" @default.
- W2983198246 workType "dissertation" @default.