Matches in SemOpenAlex for { <https://semopenalex.org/work/W2983202017> ?p ?o ?g. }
- W2983202017 endingPage "79" @default.
- W2983202017 startingPage "73" @default.
- W2983202017 abstract "ObjectivesTo develop and validate predictive models using clinical parameters, radiomic features and a combination of both for lymph node metastasis (LNM) in pre-surgical CT-based stage IA non-small cell lung cancer (NSCLC) patients.MethodsThis retrospective study included 649 pre-surgical CT-based stage IA NSCLC patients from our hospital. One hundred and thirty-eight (21 %) of the 649 patients had LNM after surgery. A total of 396 radiomic features were extracted from the venous phase contrast enhanced computed tomography (CECT). The training group included 455 patients (97 with and 358 without LNM) and the testing group included 194 patients (41 with and 153 without LNM). The least absolute shrinkage and selection operator (LASSO) algorithm was used for radiomic feature selection. The random forest (RF) was used for model development. Three models (a clinical model, a radiomics model, and a combined model) were developed to predict LNM in early stage NSCLC patients. The area under the receiver operating characteristic (ROC) curve (AUC) value and decision curve analysis were used to evaluate the performance in LNM status (with or without LNM) using the three models.ResultsThe ROC analysis (also decision curve analysis) showed predictive performance for LNM of the radiomics model (AUC values for training and testing, respectively 0.898 and 0.851) and of the combined model (0.911 and 0.860, respectively). Both performed better than the clinical model (0.739 and 0.614, respectively; delong test p-values both<0.001).ConclusionA radiomics model using the venous phase of CE-CT has potential for predicting LNM in pre-surgical CT-based stage IA NSCLC patients." @default.
- W2983202017 created "2019-11-22" @default.
- W2983202017 creator A5001928494 @default.
- W2983202017 creator A5005126432 @default.
- W2983202017 creator A5010051004 @default.
- W2983202017 creator A5025087223 @default.
- W2983202017 creator A5037582864 @default.
- W2983202017 creator A5055336783 @default.
- W2983202017 creator A5060082493 @default.
- W2983202017 creator A5076236758 @default.
- W2983202017 date "2020-01-01" @default.
- W2983202017 modified "2023-10-18" @default.
- W2983202017 title "Development of a predictive radiomics model for lymph node metastases in pre-surgical CT-based stage IA non-small cell lung cancer" @default.
- W2983202017 cites W1982066410 @default.
- W2983202017 cites W2007058379 @default.
- W2983202017 cites W2028321856 @default.
- W2983202017 cites W2058600201 @default.
- W2983202017 cites W2061188960 @default.
- W2983202017 cites W2061427336 @default.
- W2983202017 cites W2089017607 @default.
- W2983202017 cites W2097195048 @default.
- W2983202017 cites W2121203541 @default.
- W2983202017 cites W2174661749 @default.
- W2983202017 cites W2228221433 @default.
- W2983202017 cites W2272984102 @default.
- W2983202017 cites W2323477873 @default.
- W2983202017 cites W2398056625 @default.
- W2983202017 cites W2495766782 @default.
- W2983202017 cites W2550338445 @default.
- W2983202017 cites W2588675203 @default.
- W2983202017 cites W2737706773 @default.
- W2983202017 cites W2741020353 @default.
- W2983202017 cites W2753797290 @default.
- W2983202017 cites W2765171803 @default.
- W2983202017 cites W2767128594 @default.
- W2983202017 cites W2767346095 @default.
- W2983202017 cites W2795513894 @default.
- W2983202017 cites W2797711513 @default.
- W2983202017 cites W2801602330 @default.
- W2983202017 cites W2899847761 @default.
- W2983202017 cites W2914549095 @default.
- W2983202017 doi "https://doi.org/10.1016/j.lungcan.2019.11.003" @default.
- W2983202017 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31743889" @default.
- W2983202017 hasPublicationYear "2020" @default.
- W2983202017 type Work @default.
- W2983202017 sameAs 2983202017 @default.
- W2983202017 citedByCount "56" @default.
- W2983202017 countsByYear W29832020172020 @default.
- W2983202017 countsByYear W29832020172021 @default.
- W2983202017 countsByYear W29832020172022 @default.
- W2983202017 countsByYear W29832020172023 @default.
- W2983202017 crossrefType "journal-article" @default.
- W2983202017 hasAuthorship W2983202017A5001928494 @default.
- W2983202017 hasAuthorship W2983202017A5005126432 @default.
- W2983202017 hasAuthorship W2983202017A5010051004 @default.
- W2983202017 hasAuthorship W2983202017A5025087223 @default.
- W2983202017 hasAuthorship W2983202017A5037582864 @default.
- W2983202017 hasAuthorship W2983202017A5055336783 @default.
- W2983202017 hasAuthorship W2983202017A5060082493 @default.
- W2983202017 hasAuthorship W2983202017A5076236758 @default.
- W2983202017 hasBestOaLocation W29832020171 @default.
- W2983202017 hasConcept C121608353 @default.
- W2983202017 hasConcept C126322002 @default.
- W2983202017 hasConcept C126838900 @default.
- W2983202017 hasConcept C141071460 @default.
- W2983202017 hasConcept C143998085 @default.
- W2983202017 hasConcept C146357865 @default.
- W2983202017 hasConcept C151730666 @default.
- W2983202017 hasConcept C167135981 @default.
- W2983202017 hasConcept C2776256026 @default.
- W2983202017 hasConcept C2778559731 @default.
- W2983202017 hasConcept C2779013556 @default.
- W2983202017 hasConcept C2780849966 @default.
- W2983202017 hasConcept C2992571226 @default.
- W2983202017 hasConcept C58471807 @default.
- W2983202017 hasConcept C71924100 @default.
- W2983202017 hasConcept C76318530 @default.
- W2983202017 hasConcept C86803240 @default.
- W2983202017 hasConceptScore W2983202017C121608353 @default.
- W2983202017 hasConceptScore W2983202017C126322002 @default.
- W2983202017 hasConceptScore W2983202017C126838900 @default.
- W2983202017 hasConceptScore W2983202017C141071460 @default.
- W2983202017 hasConceptScore W2983202017C143998085 @default.
- W2983202017 hasConceptScore W2983202017C146357865 @default.
- W2983202017 hasConceptScore W2983202017C151730666 @default.
- W2983202017 hasConceptScore W2983202017C167135981 @default.
- W2983202017 hasConceptScore W2983202017C2776256026 @default.
- W2983202017 hasConceptScore W2983202017C2778559731 @default.
- W2983202017 hasConceptScore W2983202017C2779013556 @default.
- W2983202017 hasConceptScore W2983202017C2780849966 @default.
- W2983202017 hasConceptScore W2983202017C2992571226 @default.
- W2983202017 hasConceptScore W2983202017C58471807 @default.
- W2983202017 hasConceptScore W2983202017C71924100 @default.
- W2983202017 hasConceptScore W2983202017C76318530 @default.
- W2983202017 hasConceptScore W2983202017C86803240 @default.
- W2983202017 hasLocation W29832020171 @default.
- W2983202017 hasOpenAccess W2983202017 @default.
- W2983202017 hasPrimaryLocation W29832020171 @default.