Matches in SemOpenAlex for { <https://semopenalex.org/work/W2983280015> ?p ?o ?g. }
- W2983280015 endingPage "4933" @default.
- W2983280015 startingPage "4933" @default.
- W2983280015 abstract "This paper reports on a novel metamodel for impact detection, localization and characterization of complex composite structures based on Convolutional Neural Networks (CNN) and passive sensing. Methods to generate appropriate input datasets and network architectures for impact localization and characterization were proposed, investigated and optimized. The ultrasonic waves generated by external impact events and recorded by piezoelectric sensors are transferred to 2D images which are used for impact detection and characterization. The accuracy of the detection was tested on a composite fuselage panel which was shown to be over 94%. In addition, the scalability of this metamodelling technique has been investigated by training the CNN metamodels with the data from part of the stiffened panel and testing the performance on other sections with similar geometry. Impacts were detected with an accuracy of over 95%. Impact energy levels were also successfully categorized while trained at coupon level and applied to sub-components with greater complexity. These results validated the applicability of the proposed CNN-based metamodel to real-life application such as composite aircraft parts." @default.
- W2983280015 created "2019-11-22" @default.
- W2983280015 creator A5010252397 @default.
- W2983280015 creator A5035782187 @default.
- W2983280015 creator A5045386141 @default.
- W2983280015 date "2019-11-12" @default.
- W2983280015 modified "2023-10-14" @default.
- W2983280015 title "A Convolutional Neural Network for Impact Detection and Characterization of Complex Composite Structures" @default.
- W2983280015 cites W1966885922 @default.
- W2983280015 cites W1968976995 @default.
- W2983280015 cites W1978641127 @default.
- W2983280015 cites W1980588702 @default.
- W2983280015 cites W1983364832 @default.
- W2983280015 cites W2004424196 @default.
- W2983280015 cites W2017713683 @default.
- W2983280015 cites W2032354890 @default.
- W2983280015 cites W2046978589 @default.
- W2983280015 cites W2057645349 @default.
- W2983280015 cites W2074737208 @default.
- W2983280015 cites W2074935613 @default.
- W2983280015 cites W2082904590 @default.
- W2983280015 cites W2091321824 @default.
- W2983280015 cites W2117731089 @default.
- W2983280015 cites W2287752888 @default.
- W2983280015 cites W2342792048 @default.
- W2983280015 cites W2404692435 @default.
- W2983280015 cites W2518563800 @default.
- W2983280015 cites W2521430155 @default.
- W2983280015 cites W2531018410 @default.
- W2983280015 cites W2555062391 @default.
- W2983280015 cites W2556345765 @default.
- W2983280015 cites W2562219162 @default.
- W2983280015 cites W2584696667 @default.
- W2983280015 cites W2585332054 @default.
- W2983280015 cites W2622826443 @default.
- W2983280015 cites W2625750421 @default.
- W2983280015 cites W2734669076 @default.
- W2983280015 cites W2737897717 @default.
- W2983280015 cites W2756789966 @default.
- W2983280015 cites W2765854388 @default.
- W2983280015 cites W2773513108 @default.
- W2983280015 cites W2782623557 @default.
- W2983280015 cites W2793062918 @default.
- W2983280015 cites W2801457104 @default.
- W2983280015 cites W2810292802 @default.
- W2983280015 cites W2889314284 @default.
- W2983280015 cites W2890179326 @default.
- W2983280015 cites W2895935184 @default.
- W2983280015 cites W2939451523 @default.
- W2983280015 cites W2962949934 @default.
- W2983280015 cites W2969577109 @default.
- W2983280015 cites W3104258355 @default.
- W2983280015 doi "https://doi.org/10.3390/s19224933" @default.
- W2983280015 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6891538" @default.
- W2983280015 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31726762" @default.
- W2983280015 hasPublicationYear "2019" @default.
- W2983280015 type Work @default.
- W2983280015 sameAs 2983280015 @default.
- W2983280015 citedByCount "82" @default.
- W2983280015 countsByYear W29832800152020 @default.
- W2983280015 countsByYear W29832800152021 @default.
- W2983280015 countsByYear W29832800152022 @default.
- W2983280015 countsByYear W29832800152023 @default.
- W2983280015 crossrefType "journal-article" @default.
- W2983280015 hasAuthorship W2983280015A5010252397 @default.
- W2983280015 hasAuthorship W2983280015A5035782187 @default.
- W2983280015 hasAuthorship W2983280015A5045386141 @default.
- W2983280015 hasBestOaLocation W29832800151 @default.
- W2983280015 hasConcept C104779481 @default.
- W2983280015 hasConcept C113556839 @default.
- W2983280015 hasConcept C11413529 @default.
- W2983280015 hasConcept C127413603 @default.
- W2983280015 hasConcept C153180895 @default.
- W2983280015 hasConcept C154945302 @default.
- W2983280015 hasConcept C171250308 @default.
- W2983280015 hasConcept C192562407 @default.
- W2983280015 hasConcept C199360897 @default.
- W2983280015 hasConcept C2780841128 @default.
- W2983280015 hasConcept C41008148 @default.
- W2983280015 hasConcept C48044578 @default.
- W2983280015 hasConcept C50644808 @default.
- W2983280015 hasConcept C66938386 @default.
- W2983280015 hasConcept C77088390 @default.
- W2983280015 hasConcept C81363708 @default.
- W2983280015 hasConcept C86610423 @default.
- W2983280015 hasConceptScore W2983280015C104779481 @default.
- W2983280015 hasConceptScore W2983280015C113556839 @default.
- W2983280015 hasConceptScore W2983280015C11413529 @default.
- W2983280015 hasConceptScore W2983280015C127413603 @default.
- W2983280015 hasConceptScore W2983280015C153180895 @default.
- W2983280015 hasConceptScore W2983280015C154945302 @default.
- W2983280015 hasConceptScore W2983280015C171250308 @default.
- W2983280015 hasConceptScore W2983280015C192562407 @default.
- W2983280015 hasConceptScore W2983280015C199360897 @default.
- W2983280015 hasConceptScore W2983280015C2780841128 @default.
- W2983280015 hasConceptScore W2983280015C41008148 @default.
- W2983280015 hasConceptScore W2983280015C48044578 @default.
- W2983280015 hasConceptScore W2983280015C50644808 @default.