Matches in SemOpenAlex for { <https://semopenalex.org/work/W2983286147> ?p ?o ?g. }
- W2983286147 endingPage "111501" @default.
- W2983286147 startingPage "111501" @default.
- W2983286147 abstract "Abstract Boreal forests constitute a large portion of the global forest area, yet they are undersampled through field surveys, and only a few remotely sensed data sources provide structural information wall-to-wall throughout the boreal domain. ArcticDEM is a collection of high-resolution (2 m) space-borne stereogrammetric digital surface models (DSM) covering the entire land area north of 60° of latitude. The free-availability of ArcticDEM data offers new possibilities for aboveground biomass mapping (AGB) across boreal forests, and thus it is necessary to evaluate the potential for these data to map AGB over alternative open-data sources (i.e., Sentinel-2). This study was performed over the entire land area of Norway north of 60° of latitude, and the Norwegian national forest inventory (NFI) was used as a source of field data composed of accurately geolocated field plots (n=7710) systematically distributed across the study area. Separate random forest models were fitted using NFI data, and corresponding remotely sensed data consisting of either: i) a canopy height model (ArcticCHM) obtained by subtracting a high-quality digital terrain model (DTM) from the ArcticDEM DSM height values, ii) Sentinel-2 (S2), or iii) a combination of the two (ArcticCHM+S2). Furthermore, we assessed the effect of the forest- and terrain-specific factors on the models’ predictive accuracy. The best model (,i.e., ArcticCHM+S2) explained nearly 60% of the variance of the training set, which translated in the largest accuracy in terms of root mean square error (RMSE=41.4 t ha−1). This result highlights the synergy between 3D and multispectral data in AGB modelling. Furthermore, this study showed that despite the importance of ArcticCHM variables, the S2 model performed slightly better than ArcticCHM model. This finding highlights some of the limitations of ArcticDEM, which, despite the unprecedented spatial resolution, is highly heterogeneous due to the blending of multiple acquisitions across different years and seasons. We found that both forest- and terrain-specific characteristics affected the uncertainty of the ArcticCHM+S2 model and concluded that the combined use of ArcticCHM and Sentinel-2 represents a viable solution for AGB mapping across boreal forests. The synergy between the two data sources allowed for a reduction of the saturation effects typical of multispectral data while ensuring the spatial consistency in the output predictions due to the removal of artifacts and data voids present in ArcticCHM data. While the main contribution of this study is to provide the first evidence of the best-case-scenario (i.e., availability of accurate terrain models) that ArcticDEM data can provide for large-scale AGB modelling, it remains critically important for other studies to investigate how ArcticDEM may be used in areas where no DTMs are available as is the case for large portions of the boreal zone." @default.
- W2983286147 created "2019-11-22" @default.
- W2983286147 creator A5000454558 @default.
- W2983286147 creator A5001913092 @default.
- W2983286147 creator A5003573167 @default.
- W2983286147 creator A5019575388 @default.
- W2983286147 creator A5034096624 @default.
- W2983286147 creator A5053490540 @default.
- W2983286147 creator A5058534061 @default.
- W2983286147 creator A5075301550 @default.
- W2983286147 creator A5087247341 @default.
- W2983286147 date "2020-01-01" @default.
- W2983286147 modified "2023-10-10" @default.
- W2983286147 title "Modelling above-ground biomass stock over Norway using national forest inventory data with ArcticDEM and Sentinel-2 data" @default.
- W2983286147 cites W1774521583 @default.
- W2983286147 cites W1985467342 @default.
- W2983286147 cites W1994809198 @default.
- W2983286147 cites W1996325835 @default.
- W2983286147 cites W2009451364 @default.
- W2983286147 cites W2023660727 @default.
- W2983286147 cites W2027987768 @default.
- W2983286147 cites W2061427081 @default.
- W2983286147 cites W2081127218 @default.
- W2983286147 cites W2109631166 @default.
- W2983286147 cites W2140899781 @default.
- W2983286147 cites W2143822507 @default.
- W2983286147 cites W2169402217 @default.
- W2983286147 cites W2175271311 @default.
- W2983286147 cites W2191238046 @default.
- W2983286147 cites W2254244704 @default.
- W2983286147 cites W2507823894 @default.
- W2983286147 cites W2512156656 @default.
- W2983286147 cites W2600176623 @default.
- W2983286147 cites W2610333285 @default.
- W2983286147 cites W2765708932 @default.
- W2983286147 cites W2808997086 @default.
- W2983286147 cites W2813092426 @default.
- W2983286147 cites W2893568594 @default.
- W2983286147 cites W2895072372 @default.
- W2983286147 cites W2901674962 @default.
- W2983286147 cites W2911964244 @default.
- W2983286147 cites W2922384210 @default.
- W2983286147 doi "https://doi.org/10.1016/j.rse.2019.111501" @default.
- W2983286147 hasPublicationYear "2020" @default.
- W2983286147 type Work @default.
- W2983286147 sameAs 2983286147 @default.
- W2983286147 citedByCount "41" @default.
- W2983286147 countsByYear W29832861472020 @default.
- W2983286147 countsByYear W29832861472021 @default.
- W2983286147 countsByYear W29832861472022 @default.
- W2983286147 countsByYear W29832861472023 @default.
- W2983286147 crossrefType "journal-article" @default.
- W2983286147 hasAuthorship W2983286147A5000454558 @default.
- W2983286147 hasAuthorship W2983286147A5001913092 @default.
- W2983286147 hasAuthorship W2983286147A5003573167 @default.
- W2983286147 hasAuthorship W2983286147A5019575388 @default.
- W2983286147 hasAuthorship W2983286147A5034096624 @default.
- W2983286147 hasAuthorship W2983286147A5053490540 @default.
- W2983286147 hasAuthorship W2983286147A5058534061 @default.
- W2983286147 hasAuthorship W2983286147A5075301550 @default.
- W2983286147 hasAuthorship W2983286147A5087247341 @default.
- W2983286147 hasBestOaLocation W29832861471 @default.
- W2983286147 hasConcept C111368507 @default.
- W2983286147 hasConcept C115540264 @default.
- W2983286147 hasConcept C127313418 @default.
- W2983286147 hasConcept C132651083 @default.
- W2983286147 hasConcept C147103442 @default.
- W2983286147 hasConcept C166957645 @default.
- W2983286147 hasConcept C204036174 @default.
- W2983286147 hasConcept C205649164 @default.
- W2983286147 hasConcept C28631016 @default.
- W2983286147 hasConcept C2994081031 @default.
- W2983286147 hasConcept C39432304 @default.
- W2983286147 hasConcept C54286561 @default.
- W2983286147 hasConcept C62649853 @default.
- W2983286147 hasConceptScore W2983286147C111368507 @default.
- W2983286147 hasConceptScore W2983286147C115540264 @default.
- W2983286147 hasConceptScore W2983286147C127313418 @default.
- W2983286147 hasConceptScore W2983286147C132651083 @default.
- W2983286147 hasConceptScore W2983286147C147103442 @default.
- W2983286147 hasConceptScore W2983286147C166957645 @default.
- W2983286147 hasConceptScore W2983286147C204036174 @default.
- W2983286147 hasConceptScore W2983286147C205649164 @default.
- W2983286147 hasConceptScore W2983286147C28631016 @default.
- W2983286147 hasConceptScore W2983286147C2994081031 @default.
- W2983286147 hasConceptScore W2983286147C39432304 @default.
- W2983286147 hasConceptScore W2983286147C54286561 @default.
- W2983286147 hasConceptScore W2983286147C62649853 @default.
- W2983286147 hasFunder F4320336013 @default.
- W2983286147 hasLocation W29832861471 @default.
- W2983286147 hasLocation W29832861472 @default.
- W2983286147 hasOpenAccess W2983286147 @default.
- W2983286147 hasPrimaryLocation W29832861471 @default.
- W2983286147 hasRelatedWork W1602001501 @default.
- W2983286147 hasRelatedWork W1967631019 @default.
- W2983286147 hasRelatedWork W2005593202 @default.
- W2983286147 hasRelatedWork W2101748122 @default.
- W2983286147 hasRelatedWork W2355101625 @default.