Matches in SemOpenAlex for { <https://semopenalex.org/work/W2983295100> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2983295100 endingPage "49" @default.
- W2983295100 startingPage "37" @default.
- W2983295100 abstract "Abstract Laws’ mask method has achieved wide acceptance in texture analysis, however it is not robust to noise. Fuzzy filters are well known for denoising applications. This work proposes a noise-robust Laws’ mask descriptor by integrating the exiting fuzzy filters with the traditional Laws’ mask for the improvement of texture classification of noisy texture images. Images are corrupted by adding Gaussian noise of different values. These noisy images are transformed into fuzzy images through fuzzy filters of different windows. Then the texture features are extracted using Laws’ mask descriptor. To investigate the proposed techniques two texture databases i.e. Brodatz and STex are used. The proposals are assessed by comparing the performance of the traditional Laws’ mask descriptor alone and after combined with the fuzzy filters on noisy images. The k-Nearest Neighbor (k-NN) classifier is utilized in the classification task. Results indicate that the proposed approach delivers higher classification accuracy than the traditional Laws’ mask method. Hence, validate that the suggested methods significantly improve the noised texture classification." @default.
- W2983295100 created "2019-11-22" @default.
- W2983295100 creator A5001806573 @default.
- W2983295100 creator A5075573544 @default.
- W2983295100 date "2020-03-01" @default.
- W2983295100 modified "2023-09-27" @default.
- W2983295100 title "Noise robust Laws’ filters based on fuzzy filters for texture classification" @default.
- W2983295100 cites W1164239218 @default.
- W2983295100 cites W145358992 @default.
- W2983295100 cites W1976540258 @default.
- W2983295100 cites W2022274350 @default.
- W2983295100 cites W2031596661 @default.
- W2983295100 cites W2044465660 @default.
- W2983295100 cites W2044865345 @default.
- W2983295100 cites W2046320894 @default.
- W2983295100 cites W2058021621 @default.
- W2983295100 cites W2065958844 @default.
- W2983295100 cites W2071795438 @default.
- W2983295100 cites W2118867923 @default.
- W2983295100 cites W2137576848 @default.
- W2983295100 cites W2143188067 @default.
- W2983295100 cites W2156021289 @default.
- W2983295100 cites W2171948434 @default.
- W2983295100 cites W2531191966 @default.
- W2983295100 cites W2563603481 @default.
- W2983295100 cites W2595440973 @default.
- W2983295100 cites W2770041576 @default.
- W2983295100 cites W2781801258 @default.
- W2983295100 doi "https://doi.org/10.1016/j.eij.2019.10.003" @default.
- W2983295100 hasPublicationYear "2020" @default.
- W2983295100 type Work @default.
- W2983295100 sameAs 2983295100 @default.
- W2983295100 citedByCount "1" @default.
- W2983295100 countsByYear W29832951002023 @default.
- W2983295100 crossrefType "journal-article" @default.
- W2983295100 hasAuthorship W2983295100A5001806573 @default.
- W2983295100 hasAuthorship W2983295100A5075573544 @default.
- W2983295100 hasBestOaLocation W29832951001 @default.
- W2983295100 hasConcept C115961682 @default.
- W2983295100 hasConcept C153180895 @default.
- W2983295100 hasConcept C154945302 @default.
- W2983295100 hasConcept C163294075 @default.
- W2983295100 hasConcept C17744445 @default.
- W2983295100 hasConcept C199539241 @default.
- W2983295100 hasConcept C2781195486 @default.
- W2983295100 hasConcept C31972630 @default.
- W2983295100 hasConcept C41008148 @default.
- W2983295100 hasConcept C4199805 @default.
- W2983295100 hasConcept C58166 @default.
- W2983295100 hasConcept C95623464 @default.
- W2983295100 hasConcept C99498987 @default.
- W2983295100 hasConceptScore W2983295100C115961682 @default.
- W2983295100 hasConceptScore W2983295100C153180895 @default.
- W2983295100 hasConceptScore W2983295100C154945302 @default.
- W2983295100 hasConceptScore W2983295100C163294075 @default.
- W2983295100 hasConceptScore W2983295100C17744445 @default.
- W2983295100 hasConceptScore W2983295100C199539241 @default.
- W2983295100 hasConceptScore W2983295100C2781195486 @default.
- W2983295100 hasConceptScore W2983295100C31972630 @default.
- W2983295100 hasConceptScore W2983295100C41008148 @default.
- W2983295100 hasConceptScore W2983295100C4199805 @default.
- W2983295100 hasConceptScore W2983295100C58166 @default.
- W2983295100 hasConceptScore W2983295100C95623464 @default.
- W2983295100 hasConceptScore W2983295100C99498987 @default.
- W2983295100 hasIssue "1" @default.
- W2983295100 hasLocation W29832951001 @default.
- W2983295100 hasOpenAccess W2983295100 @default.
- W2983295100 hasPrimaryLocation W29832951001 @default.
- W2983295100 hasRelatedWork W11499724 @default.
- W2983295100 hasRelatedWork W1214702 @default.
- W2983295100 hasRelatedWork W12239746 @default.
- W2983295100 hasRelatedWork W13493742 @default.
- W2983295100 hasRelatedWork W1693066 @default.
- W2983295100 hasRelatedWork W4291971 @default.
- W2983295100 hasRelatedWork W6468916 @default.
- W2983295100 hasRelatedWork W7564530 @default.
- W2983295100 hasRelatedWork W998388 @default.
- W2983295100 hasRelatedWork W5603416 @default.
- W2983295100 hasVolume "21" @default.
- W2983295100 isParatext "false" @default.
- W2983295100 isRetracted "false" @default.
- W2983295100 magId "2983295100" @default.
- W2983295100 workType "article" @default.