Matches in SemOpenAlex for { <https://semopenalex.org/work/W2983296418> ?p ?o ?g. }
- W2983296418 endingPage "146" @default.
- W2983296418 startingPage "133" @default.
- W2983296418 abstract "Student performance prediction is of great importance to many educational domains, such as academic early warning and personalized teaching, and has drawn numerous research attention in recent decades. Most of the previous studies are based on students’ historical course grades, demographical data, in-class study performance, and online activities from e-learning platforms, e.g., Massive Open Online Courses (MOOCs). Thanks to the widely used of campus smartcard, it supplies an opportunity to predict students’ academic performance with their off-line behavioral data. In this study, we seek to capture three student behavioral characters, including duration, variation and periodicity, and predict students’ performance based on the three types of information. However, it is highly challenging to extract efficient features manually from the huge amount of raw smartcard records. Besides, it is not trivial to construct a good predictive model for some majors with limited student samples. To address the above issues, we develop a novel end-to-end deep learning method and propose Dual Path Convolutional Neural Network (DPCNN) for student performance prediction. Moreover, we introduce multi-task learning to our method and predict the performance of students from different majors in a unified framework. Experimental results demonstrate the superiority of our approach over the state-of-the-art methods." @default.
- W2983296418 created "2019-11-22" @default.
- W2983296418 creator A5035643040 @default.
- W2983296418 creator A5040285913 @default.
- W2983296418 creator A5041218074 @default.
- W2983296418 creator A5046156620 @default.
- W2983296418 creator A5047786320 @default.
- W2983296418 creator A5071098737 @default.
- W2983296418 date "2019-01-01" @default.
- W2983296418 modified "2023-09-26" @default.
- W2983296418 title "Dual Path Convolutional Neural Network for Student Performance Prediction" @default.
- W2983296418 cites W2006444123 @default.
- W2983296418 cites W2038749650 @default.
- W2983296418 cites W2045335684 @default.
- W2983296418 cites W2062118960 @default.
- W2983296418 cites W2065358297 @default.
- W2983296418 cites W2085997867 @default.
- W2983296418 cites W2086145942 @default.
- W2983296418 cites W2145445683 @default.
- W2983296418 cites W2146078710 @default.
- W2983296418 cites W2153378020 @default.
- W2983296418 cites W2163922914 @default.
- W2983296418 cites W2224902226 @default.
- W2983296418 cites W2247695808 @default.
- W2983296418 cites W2314302852 @default.
- W2983296418 cites W2395088234 @default.
- W2983296418 cites W2518782678 @default.
- W2983296418 cites W2528639018 @default.
- W2983296418 cites W2531767846 @default.
- W2983296418 cites W2551441037 @default.
- W2983296418 cites W2885207714 @default.
- W2983296418 cites W2921752035 @default.
- W2983296418 cites W3037176799 @default.
- W2983296418 cites W3103475369 @default.
- W2983296418 cites W4292402161 @default.
- W2983296418 doi "https://doi.org/10.1007/978-3-030-34223-4_9" @default.
- W2983296418 hasPublicationYear "2019" @default.
- W2983296418 type Work @default.
- W2983296418 sameAs 2983296418 @default.
- W2983296418 citedByCount "7" @default.
- W2983296418 countsByYear W29832964182019 @default.
- W2983296418 countsByYear W29832964182021 @default.
- W2983296418 countsByYear W29832964182022 @default.
- W2983296418 countsByYear W29832964182023 @default.
- W2983296418 crossrefType "book-chapter" @default.
- W2983296418 hasAuthorship W2983296418A5035643040 @default.
- W2983296418 hasAuthorship W2983296418A5040285913 @default.
- W2983296418 hasAuthorship W2983296418A5041218074 @default.
- W2983296418 hasAuthorship W2983296418A5046156620 @default.
- W2983296418 hasAuthorship W2983296418A5047786320 @default.
- W2983296418 hasAuthorship W2983296418A5071098737 @default.
- W2983296418 hasConcept C108583219 @default.
- W2983296418 hasConcept C119857082 @default.
- W2983296418 hasConcept C121332964 @default.
- W2983296418 hasConcept C124952713 @default.
- W2983296418 hasConcept C142362112 @default.
- W2983296418 hasConcept C154945302 @default.
- W2983296418 hasConcept C162324750 @default.
- W2983296418 hasConcept C187736073 @default.
- W2983296418 hasConcept C199360897 @default.
- W2983296418 hasConcept C2777212361 @default.
- W2983296418 hasConcept C2778334786 @default.
- W2983296418 hasConcept C2780451532 @default.
- W2983296418 hasConcept C2780801425 @default.
- W2983296418 hasConcept C2780980858 @default.
- W2983296418 hasConcept C41008148 @default.
- W2983296418 hasConcept C44870925 @default.
- W2983296418 hasConcept C50644808 @default.
- W2983296418 hasConcept C81363708 @default.
- W2983296418 hasConceptScore W2983296418C108583219 @default.
- W2983296418 hasConceptScore W2983296418C119857082 @default.
- W2983296418 hasConceptScore W2983296418C121332964 @default.
- W2983296418 hasConceptScore W2983296418C124952713 @default.
- W2983296418 hasConceptScore W2983296418C142362112 @default.
- W2983296418 hasConceptScore W2983296418C154945302 @default.
- W2983296418 hasConceptScore W2983296418C162324750 @default.
- W2983296418 hasConceptScore W2983296418C187736073 @default.
- W2983296418 hasConceptScore W2983296418C199360897 @default.
- W2983296418 hasConceptScore W2983296418C2777212361 @default.
- W2983296418 hasConceptScore W2983296418C2778334786 @default.
- W2983296418 hasConceptScore W2983296418C2780451532 @default.
- W2983296418 hasConceptScore W2983296418C2780801425 @default.
- W2983296418 hasConceptScore W2983296418C2780980858 @default.
- W2983296418 hasConceptScore W2983296418C41008148 @default.
- W2983296418 hasConceptScore W2983296418C44870925 @default.
- W2983296418 hasConceptScore W2983296418C50644808 @default.
- W2983296418 hasConceptScore W2983296418C81363708 @default.
- W2983296418 hasLocation W29832964181 @default.
- W2983296418 hasOpenAccess W2983296418 @default.
- W2983296418 hasPrimaryLocation W29832964181 @default.
- W2983296418 hasRelatedWork W2731899572 @default.
- W2983296418 hasRelatedWork W2999805992 @default.
- W2983296418 hasRelatedWork W3116150086 @default.
- W2983296418 hasRelatedWork W3133861977 @default.
- W2983296418 hasRelatedWork W4200173597 @default.
- W2983296418 hasRelatedWork W4223943233 @default.
- W2983296418 hasRelatedWork W4291897433 @default.
- W2983296418 hasRelatedWork W4312417841 @default.