Matches in SemOpenAlex for { <https://semopenalex.org/work/W2983352457> ?p ?o ?g. }
- W2983352457 endingPage "124296" @default.
- W2983352457 startingPage "124296" @default.
- W2983352457 abstract "Abstract Prediction of streamflow and rainfall is important for water resources planning and management. In this study, we developed two hybrid models, based on long short-term memory network (LSTM), for monthly streamflow and rainfall forecasting. One model, wavelet-LSTM (namely, WLSTM), applied a trous algorithm of wavelet transform to do series decomposition, and the other, convolutional LSTM (namely, CLSTM), coupled convolutional neural network to extract temporal features. Two streamflow datasets and two rainfall datasets are used to evaluate the proposed models. The prediction accuracy of WLSTM and CLSTM was compared with that of multi-layer perceptron (MLP) and LSTM. Results indicated that LSTM was applicable for time series prediction, but WLSTM and CLSTM were superior alternatives." @default.
- W2983352457 created "2019-11-22" @default.
- W2983352457 creator A5001176128 @default.
- W2983352457 creator A5011160537 @default.
- W2983352457 creator A5015768486 @default.
- W2983352457 creator A5033402702 @default.
- W2983352457 creator A5054452844 @default.
- W2983352457 creator A5054804045 @default.
- W2983352457 creator A5079001629 @default.
- W2983352457 date "2020-04-01" @default.
- W2983352457 modified "2023-10-16" @default.
- W2983352457 title "Streamflow and rainfall forecasting by two long short-term memory-based models" @default.
- W2983352457 cites W1589475696 @default.
- W2983352457 cites W1689711448 @default.
- W2983352457 cites W1864468960 @default.
- W2983352457 cites W1949737605 @default.
- W2983352457 cites W1969930237 @default.
- W2983352457 cites W1977664222 @default.
- W2983352457 cites W1994906459 @default.
- W2983352457 cites W2003086804 @default.
- W2983352457 cites W2042509423 @default.
- W2983352457 cites W2062087947 @default.
- W2983352457 cites W2064675550 @default.
- W2983352457 cites W2068059354 @default.
- W2983352457 cites W2089016853 @default.
- W2983352457 cites W2107878631 @default.
- W2983352457 cites W2110485445 @default.
- W2983352457 cites W2116988482 @default.
- W2983352457 cites W2118290911 @default.
- W2983352457 cites W2131292781 @default.
- W2983352457 cites W2132104490 @default.
- W2983352457 cites W2132984323 @default.
- W2983352457 cites W2136848157 @default.
- W2983352457 cites W2177959459 @default.
- W2983352457 cites W2426187208 @default.
- W2983352457 cites W2461729787 @default.
- W2983352457 cites W2565516711 @default.
- W2983352457 cites W2593080009 @default.
- W2983352457 cites W2606920954 @default.
- W2983352457 cites W2622931222 @default.
- W2983352457 cites W2769851728 @default.
- W2983352457 cites W2797864131 @default.
- W2983352457 cites W2800819102 @default.
- W2983352457 cites W2801349916 @default.
- W2983352457 cites W2802436364 @default.
- W2983352457 cites W2804028831 @default.
- W2983352457 cites W2900523186 @default.
- W2983352457 cites W2905216752 @default.
- W2983352457 cites W2962949934 @default.
- W2983352457 cites W2962957157 @default.
- W2983352457 cites W3106370744 @default.
- W2983352457 cites W3123551284 @default.
- W2983352457 doi "https://doi.org/10.1016/j.jhydrol.2019.124296" @default.
- W2983352457 hasPublicationYear "2020" @default.
- W2983352457 type Work @default.
- W2983352457 sameAs 2983352457 @default.
- W2983352457 citedByCount "127" @default.
- W2983352457 countsByYear W29833524572020 @default.
- W2983352457 countsByYear W29833524572021 @default.
- W2983352457 countsByYear W29833524572022 @default.
- W2983352457 countsByYear W29833524572023 @default.
- W2983352457 crossrefType "journal-article" @default.
- W2983352457 hasAuthorship W2983352457A5001176128 @default.
- W2983352457 hasAuthorship W2983352457A5011160537 @default.
- W2983352457 hasAuthorship W2983352457A5015768486 @default.
- W2983352457 hasAuthorship W2983352457A5033402702 @default.
- W2983352457 hasAuthorship W2983352457A5054452844 @default.
- W2983352457 hasAuthorship W2983352457A5054804045 @default.
- W2983352457 hasAuthorship W2983352457A5079001629 @default.
- W2983352457 hasBestOaLocation W29833524571 @default.
- W2983352457 hasConcept C121332964 @default.
- W2983352457 hasConcept C126645576 @default.
- W2983352457 hasConcept C127313418 @default.
- W2983352457 hasConcept C153294291 @default.
- W2983352457 hasConcept C205649164 @default.
- W2983352457 hasConcept C39432304 @default.
- W2983352457 hasConcept C49204034 @default.
- W2983352457 hasConcept C53739315 @default.
- W2983352457 hasConcept C58640448 @default.
- W2983352457 hasConcept C61797465 @default.
- W2983352457 hasConcept C62520636 @default.
- W2983352457 hasConceptScore W2983352457C121332964 @default.
- W2983352457 hasConceptScore W2983352457C126645576 @default.
- W2983352457 hasConceptScore W2983352457C127313418 @default.
- W2983352457 hasConceptScore W2983352457C153294291 @default.
- W2983352457 hasConceptScore W2983352457C205649164 @default.
- W2983352457 hasConceptScore W2983352457C39432304 @default.
- W2983352457 hasConceptScore W2983352457C49204034 @default.
- W2983352457 hasConceptScore W2983352457C53739315 @default.
- W2983352457 hasConceptScore W2983352457C58640448 @default.
- W2983352457 hasConceptScore W2983352457C61797465 @default.
- W2983352457 hasConceptScore W2983352457C62520636 @default.
- W2983352457 hasFunder F4320321001 @default.
- W2983352457 hasLocation W29833524571 @default.
- W2983352457 hasOpenAccess W2983352457 @default.
- W2983352457 hasPrimaryLocation W29833524571 @default.
- W2983352457 hasRelatedWork W2028433185 @default.
- W2983352457 hasRelatedWork W2131381158 @default.