Matches in SemOpenAlex for { <https://semopenalex.org/work/W2983417251> ?p ?o ?g. }
- W2983417251 endingPage "1014" @default.
- W2983417251 startingPage "996" @default.
- W2983417251 abstract "Walking and other forms of self-motion create global motion patterns across our eyes. With the resulting stream of visual signals, how do we perceive ourselves as moving through a stable world? Although the neural mechanisms are largely unknown, human studies (Warren and Rushton, 2009) provide strong evidence that the visual system is capable of parsing the global motion into two components: one due to self-motion and the other due to independently moving objects. In the present study, we use computational modeling to investigate potential neural mechanisms for stabilizing visual perception during self-motion that build on neurophysiology of the middle temporal (MT) and medial superior temporal (MST) areas. One such mechanism leverages direction, speed, and disparity tuning of cells in dorsal MST (MSTd) to estimate the combined motion parallax and disparity signals attributed to the observer's self-motion. Feedback from the most active MSTd cell subpopulations suppresses motion signals in MT that locally match the preference of the MSTd cell in both parallax and disparity. This mechanism combined with local surround inhibition in MT allows the model to estimate self-motion while maintaining a sparse motion representation that is compatible with perceptual stability. A key consequence is that after signals compatible with the observer's self-motion are suppressed, the direction of independently moving objects is represented in a world-relative rather than observer-relative reference frame. Our analysis explicates how temporal dynamics and joint motion parallax-disparity tuning resolve the world-relative motion of moving objects and establish perceptual stability. Together, these mechanisms capture findings on the perception of object motion during self-motion. SIGNIFICANCE STATEMENT The image integrated by our eyes as we move through our environment undergoes constant flux as trees, buildings, and other surroundings stream by us. If our view can change so radically from one moment to the next, how do we perceive a stable world? Although progress has been made in understanding how this works, little is known about the underlying brain mechanisms. We propose a computational solution whereby multiple brain areas communicate to suppress the motion attributed to our movement relative to the stationary world, which is often responsible for a large proportion of the flux across the visual field. We simulated the proposed neural mechanisms and tested model estimates using data from human perceptual studies." @default.
- W2983417251 created "2019-11-22" @default.
- W2983417251 creator A5035215084 @default.
- W2983417251 creator A5069341270 @default.
- W2983417251 date "2019-11-07" @default.
- W2983417251 modified "2023-10-16" @default.
- W2983417251 title "Computational Mechanisms for Perceptual Stability using Disparity and Motion Parallax" @default.
- W2983417251 cites W120467196 @default.
- W2983417251 cites W1788239614 @default.
- W2983417251 cites W1805414341 @default.
- W2983417251 cites W1812165863 @default.
- W2983417251 cites W1860548438 @default.
- W2983417251 cites W1878451041 @default.
- W2983417251 cites W1911029627 @default.
- W2983417251 cites W1964242670 @default.
- W2983417251 cites W1964546024 @default.
- W2983417251 cites W1964624046 @default.
- W2983417251 cites W1966639546 @default.
- W2983417251 cites W1972864926 @default.
- W2983417251 cites W1994197658 @default.
- W2983417251 cites W1995065817 @default.
- W2983417251 cites W1999507572 @default.
- W2983417251 cites W2005643897 @default.
- W2983417251 cites W2007097535 @default.
- W2983417251 cites W2007156328 @default.
- W2983417251 cites W2011405882 @default.
- W2983417251 cites W2015342032 @default.
- W2983417251 cites W2018159889 @default.
- W2983417251 cites W2019970108 @default.
- W2983417251 cites W2027999072 @default.
- W2983417251 cites W2037141881 @default.
- W2983417251 cites W2039133703 @default.
- W2983417251 cites W2041756956 @default.
- W2983417251 cites W2042232981 @default.
- W2983417251 cites W2043232909 @default.
- W2983417251 cites W2050271480 @default.
- W2983417251 cites W2066172985 @default.
- W2983417251 cites W2067168450 @default.
- W2983417251 cites W2068635075 @default.
- W2983417251 cites W2072716665 @default.
- W2983417251 cites W2077035528 @default.
- W2983417251 cites W2085989895 @default.
- W2983417251 cites W2086275187 @default.
- W2983417251 cites W2090454623 @default.
- W2983417251 cites W2091470786 @default.
- W2983417251 cites W2095498671 @default.
- W2983417251 cites W2097167689 @default.
- W2983417251 cites W2098580305 @default.
- W2983417251 cites W2102733487 @default.
- W2983417251 cites W2107098820 @default.
- W2983417251 cites W2121031039 @default.
- W2983417251 cites W2121271574 @default.
- W2983417251 cites W2126039825 @default.
- W2983417251 cites W2127133513 @default.
- W2983417251 cites W2131185750 @default.
- W2983417251 cites W2131539287 @default.
- W2983417251 cites W2139196349 @default.
- W2983417251 cites W2145439642 @default.
- W2983417251 cites W2146698349 @default.
- W2983417251 cites W2148565069 @default.
- W2983417251 cites W2148764920 @default.
- W2983417251 cites W2149166988 @default.
- W2983417251 cites W2169324446 @default.
- W2983417251 cites W2171527584 @default.
- W2983417251 cites W2313316825 @default.
- W2983417251 cites W2338043583 @default.
- W2983417251 cites W2415188544 @default.
- W2983417251 cites W24290523 @default.
- W2983417251 cites W2463722408 @default.
- W2983417251 cites W2497097262 @default.
- W2983417251 cites W2570718103 @default.
- W2983417251 cites W2615272616 @default.
- W2983417251 cites W2736803456 @default.
- W2983417251 cites W4241653134 @default.
- W2983417251 cites W4248721373 @default.
- W2983417251 doi "https://doi.org/10.1523/jneurosci.0036-19.2019" @default.
- W2983417251 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6989005" @default.
- W2983417251 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31699889" @default.
- W2983417251 hasPublicationYear "2019" @default.
- W2983417251 type Work @default.
- W2983417251 sameAs 2983417251 @default.
- W2983417251 citedByCount "9" @default.
- W2983417251 countsByYear W29834172512020 @default.
- W2983417251 countsByYear W29834172512021 @default.
- W2983417251 countsByYear W29834172512022 @default.
- W2983417251 countsByYear W29834172512023 @default.
- W2983417251 crossrefType "journal-article" @default.
- W2983417251 hasAuthorship W2983417251A5035215084 @default.
- W2983417251 hasAuthorship W2983417251A5069341270 @default.
- W2983417251 hasBestOaLocation W29834172511 @default.
- W2983417251 hasConcept C104114177 @default.
- W2983417251 hasConcept C121332964 @default.
- W2983417251 hasConcept C146159030 @default.
- W2983417251 hasConcept C154945302 @default.
- W2983417251 hasConcept C15744967 @default.
- W2983417251 hasConcept C15759828 @default.
- W2983417251 hasConcept C169760540 @default.
- W2983417251 hasConcept C26760741 @default.