Matches in SemOpenAlex for { <https://semopenalex.org/work/W2983605412> ?p ?o ?g. }
- W2983605412 endingPage "1" @default.
- W2983605412 startingPage "1" @default.
- W2983605412 abstract "The recovery of sparse signals given their linear mapping on lower-dimensional spaces can be partitioned into a support estimation phase and a coefficient estimation phase. We propose to estimate the support with an oracle based on a deep neural network trained jointly with the linear mapping at the encoder. The divination of the oracle is then used to estimate the coefficients by pseudo-inversion. This architecture allows the definition of an encoding-decoding scheme with state-of-the-art recovery capabilities when applied to biological signals such as ECG and EEG, thus allowing extremely low-complex encoders. As an additional feature, oracle-based recovery is able to self-assess, by indicating with remarkable accuracy chunks of signals that may have been reconstructed with a non-satisfactory quality. This self-assessment capability is unique in the CS literature and paves the way for further improvements depending on the requirements of the specific application. As an example, our scheme is able to satisfyingly compress by a factor of 2.67 an ECG or EEG signal with a complexity equivalent to only 24 signed sums per processed sample." @default.
- W2983605412 created "2019-11-22" @default.
- W2983605412 creator A5019602694 @default.
- W2983605412 creator A5026905233 @default.
- W2983605412 creator A5032387854 @default.
- W2983605412 creator A5062714455 @default.
- W2983605412 creator A5081473165 @default.
- W2983605412 creator A5088876922 @default.
- W2983605412 date "2020-01-01" @default.
- W2983605412 modified "2023-09-25" @default.
- W2983605412 title "Deep Neural Oracles for Short-window Optimized Compressed Sensing of Biosignals" @default.
- W2983605412 cites W1422049004 @default.
- W2983605412 cites W1763925716 @default.
- W2983605412 cites W1849787805 @default.
- W2983605412 cites W1966602924 @default.
- W2983605412 cites W1972091546 @default.
- W2983605412 cites W1972967427 @default.
- W2983605412 cites W1974812526 @default.
- W2983605412 cites W1976426522 @default.
- W2983605412 cites W2013024221 @default.
- W2983605412 cites W2029816571 @default.
- W2983605412 cites W2032712527 @default.
- W2983605412 cites W2041046019 @default.
- W2983605412 cites W2054669701 @default.
- W2983605412 cites W2065581062 @default.
- W2983605412 cites W2083663865 @default.
- W2983605412 cites W2093427575 @default.
- W2983605412 cites W2100556411 @default.
- W2983605412 cites W2111414067 @default.
- W2983605412 cites W2127271355 @default.
- W2983605412 cites W2129131372 @default.
- W2983605412 cites W2132904166 @default.
- W2983605412 cites W2134033146 @default.
- W2983605412 cites W2134207998 @default.
- W2983605412 cites W2145096794 @default.
- W2983605412 cites W2160732418 @default.
- W2983605412 cites W2162800060 @default.
- W2983605412 cites W2166670884 @default.
- W2983605412 cites W2176563895 @default.
- W2983605412 cites W2190983062 @default.
- W2983605412 cites W2273561594 @default.
- W2983605412 cites W2289917018 @default.
- W2983605412 cites W2394634174 @default.
- W2983605412 cites W2507344106 @default.
- W2983605412 cites W2510572839 @default.
- W2983605412 cites W2578009003 @default.
- W2983605412 cites W2578406593 @default.
- W2983605412 cites W2735472725 @default.
- W2983605412 cites W2756336019 @default.
- W2983605412 cites W2794584188 @default.
- W2983605412 cites W2798559986 @default.
- W2983605412 cites W2809334893 @default.
- W2983605412 cites W2921746183 @default.
- W2983605412 cites W2964178808 @default.
- W2983605412 cites W2964251511 @default.
- W2983605412 cites W2966242913 @default.
- W2983605412 cites W3102346569 @default.
- W2983605412 cites W3102722370 @default.
- W2983605412 cites W4231664325 @default.
- W2983605412 cites W4250955649 @default.
- W2983605412 doi "https://doi.org/10.1109/tbcas.2020.2982824" @default.
- W2983605412 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32203026" @default.
- W2983605412 hasPublicationYear "2020" @default.
- W2983605412 type Work @default.
- W2983605412 sameAs 2983605412 @default.
- W2983605412 citedByCount "13" @default.
- W2983605412 countsByYear W29836054122020 @default.
- W2983605412 countsByYear W29836054122021 @default.
- W2983605412 countsByYear W29836054122022 @default.
- W2983605412 countsByYear W29836054122023 @default.
- W2983605412 crossrefType "journal-article" @default.
- W2983605412 hasAuthorship W2983605412A5019602694 @default.
- W2983605412 hasAuthorship W2983605412A5026905233 @default.
- W2983605412 hasAuthorship W2983605412A5032387854 @default.
- W2983605412 hasAuthorship W2983605412A5062714455 @default.
- W2983605412 hasAuthorship W2983605412A5081473165 @default.
- W2983605412 hasAuthorship W2983605412A5088876922 @default.
- W2983605412 hasBestOaLocation W29836054122 @default.
- W2983605412 hasConcept C111919701 @default.
- W2983605412 hasConcept C11413529 @default.
- W2983605412 hasConcept C115903868 @default.
- W2983605412 hasConcept C118505674 @default.
- W2983605412 hasConcept C125411270 @default.
- W2983605412 hasConcept C138885662 @default.
- W2983605412 hasConcept C153180895 @default.
- W2983605412 hasConcept C154945302 @default.
- W2983605412 hasConcept C199360897 @default.
- W2983605412 hasConcept C2776401178 @default.
- W2983605412 hasConcept C2779843651 @default.
- W2983605412 hasConcept C28490314 @default.
- W2983605412 hasConcept C41008148 @default.
- W2983605412 hasConcept C41895202 @default.
- W2983605412 hasConcept C50644808 @default.
- W2983605412 hasConcept C55166926 @default.
- W2983605412 hasConcept C57273362 @default.
- W2983605412 hasConceptScore W2983605412C111919701 @default.
- W2983605412 hasConceptScore W2983605412C11413529 @default.
- W2983605412 hasConceptScore W2983605412C115903868 @default.