Matches in SemOpenAlex for { <https://semopenalex.org/work/W2983648496> ?p ?o ?g. }
- W2983648496 abstract "Abstract Recent rise of microarray and next-generation sequencing in genome-related fields has simplified obtaining gene expression data at whole gene level, and biological interpretation of gene signatures related to life phenomena and diseases has become very important. However, the conventional method is numerical comparison of gene signature, pathway, and gene ontology (GO) overlap and distribution bias, and it is not possible to compare the specificity and importance of genes contained in gene signatures as humans do. This study proposes the gene signature vector (GsVec), a unique method for interpreting gene signatures that clarifies the semantic relationship between gene signatures by incorporating a method of distributed document representation from natural language processing (NLP). In proposed algorithm, a gene-topic vector is created by multiplying the feature vector based on the gene’s distributed representation by the probability of the gene signature topic and the low frequency of occurrence of the corresponding gene in all gene signatures. These vectors are concatenated for genes included in each gene signature to create a signature vector. The degrees of similarity between signature vectors are obtained from the cosine distances, and the levels of relevance between gene signatures are quantified. Using the above algorithm, GsVec learned approximately 5,000 types of canonical pathway and GO biological process gene signatures published in the Molecular Signatures Database (MSigDB). Then, validation of the pathway database BioCarta with known biological significance and validation using actual gene expression data (differentially expressed genes) were performed, and both were able to obtain biologically valid results. In addition, the results compared with the pathway enrichment analysis in Fisher’s exact test used in the conventional method resulted in equivalent or more biologically valid signatures. Furthermore, although NLP is generally developed in Python, GsVec can execute the entire process in only the R language, the main language of bioinformatics." @default.
- W2983648496 created "2019-11-22" @default.
- W2983648496 creator A5005015007 @default.
- W2983648496 creator A5090601040 @default.
- W2983648496 date "2019-11-18" @default.
- W2983648496 modified "2023-10-18" @default.
- W2983648496 title "Comprehensive biological interpretation of gene signatures using semantic distributed representation" @default.
- W2983648496 cites W2020541351 @default.
- W2983648496 cites W2023815775 @default.
- W2983648496 cites W2024932032 @default.
- W2983648496 cites W2043548405 @default.
- W2983648496 cites W2046270293 @default.
- W2983648496 cites W2060300932 @default.
- W2983648496 cites W2085042500 @default.
- W2983648496 cites W2091107271 @default.
- W2983648496 cites W2096283457 @default.
- W2983648496 cites W2120472250 @default.
- W2983648496 cites W2130410032 @default.
- W2983648496 cites W2133465414 @default.
- W2983648496 cites W2144675138 @default.
- W2983648496 cites W2146512944 @default.
- W2983648496 cites W2146749911 @default.
- W2983648496 cites W2155330008 @default.
- W2983648496 cites W2214074259 @default.
- W2983648496 cites W2519132385 @default.
- W2983648496 cites W2566820606 @default.
- W2983648496 cites W2603265271 @default.
- W2983648496 cites W2774037113 @default.
- W2983648496 cites W2807882529 @default.
- W2983648496 cites W2906768105 @default.
- W2983648496 cites W2945386610 @default.
- W2983648496 cites W2962755997 @default.
- W2983648496 cites W4242289937 @default.
- W2983648496 doi "https://doi.org/10.1101/846691" @default.
- W2983648496 hasPublicationYear "2019" @default.
- W2983648496 type Work @default.
- W2983648496 sameAs 2983648496 @default.
- W2983648496 citedByCount "0" @default.
- W2983648496 crossrefType "posted-content" @default.
- W2983648496 hasAuthorship W2983648496A5005015007 @default.
- W2983648496 hasAuthorship W2983648496A5090601040 @default.
- W2983648496 hasBestOaLocation W29836484961 @default.
- W2983648496 hasConcept C104317684 @default.
- W2983648496 hasConcept C124101348 @default.
- W2983648496 hasConcept C130318100 @default.
- W2983648496 hasConcept C138885662 @default.
- W2983648496 hasConcept C150194340 @default.
- W2983648496 hasConcept C154945302 @default.
- W2983648496 hasConcept C17744445 @default.
- W2983648496 hasConcept C199539241 @default.
- W2983648496 hasConcept C201797286 @default.
- W2983648496 hasConcept C2524010 @default.
- W2983648496 hasConcept C2776359362 @default.
- W2983648496 hasConcept C2776401178 @default.
- W2983648496 hasConcept C2779696439 @default.
- W2983648496 hasConcept C2779733811 @default.
- W2983648496 hasConcept C33923547 @default.
- W2983648496 hasConcept C41008148 @default.
- W2983648496 hasConcept C41895202 @default.
- W2983648496 hasConcept C54355233 @default.
- W2983648496 hasConcept C70721500 @default.
- W2983648496 hasConcept C86803240 @default.
- W2983648496 hasConcept C94625758 @default.
- W2983648496 hasConceptScore W2983648496C104317684 @default.
- W2983648496 hasConceptScore W2983648496C124101348 @default.
- W2983648496 hasConceptScore W2983648496C130318100 @default.
- W2983648496 hasConceptScore W2983648496C138885662 @default.
- W2983648496 hasConceptScore W2983648496C150194340 @default.
- W2983648496 hasConceptScore W2983648496C154945302 @default.
- W2983648496 hasConceptScore W2983648496C17744445 @default.
- W2983648496 hasConceptScore W2983648496C199539241 @default.
- W2983648496 hasConceptScore W2983648496C201797286 @default.
- W2983648496 hasConceptScore W2983648496C2524010 @default.
- W2983648496 hasConceptScore W2983648496C2776359362 @default.
- W2983648496 hasConceptScore W2983648496C2776401178 @default.
- W2983648496 hasConceptScore W2983648496C2779696439 @default.
- W2983648496 hasConceptScore W2983648496C2779733811 @default.
- W2983648496 hasConceptScore W2983648496C33923547 @default.
- W2983648496 hasConceptScore W2983648496C41008148 @default.
- W2983648496 hasConceptScore W2983648496C41895202 @default.
- W2983648496 hasConceptScore W2983648496C54355233 @default.
- W2983648496 hasConceptScore W2983648496C70721500 @default.
- W2983648496 hasConceptScore W2983648496C86803240 @default.
- W2983648496 hasConceptScore W2983648496C94625758 @default.
- W2983648496 hasLocation W29836484961 @default.
- W2983648496 hasOpenAccess W2983648496 @default.
- W2983648496 hasPrimaryLocation W29836484961 @default.
- W2983648496 hasRelatedWork W2009966535 @default.
- W2983648496 hasRelatedWork W2056571799 @default.
- W2983648496 hasRelatedWork W2111172999 @default.
- W2983648496 hasRelatedWork W2152083203 @default.
- W2983648496 hasRelatedWork W2410262319 @default.
- W2983648496 hasRelatedWork W2730462120 @default.
- W2983648496 hasRelatedWork W2776498563 @default.
- W2983648496 hasRelatedWork W3211868871 @default.
- W2983648496 hasRelatedWork W4294954873 @default.
- W2983648496 hasRelatedWork W4362541156 @default.
- W2983648496 isParatext "false" @default.
- W2983648496 isRetracted "false" @default.
- W2983648496 magId "2983648496" @default.