Matches in SemOpenAlex for { <https://semopenalex.org/work/W2983706427> ?p ?o ?g. }
- W2983706427 endingPage "1135" @default.
- W2983706427 startingPage "1119" @default.
- W2983706427 abstract "Schizophrenia is a severe psychiatric disorder associated with both structural and functional brain abnormalities. In the past few years, there has been growing interest in the application of machine learning techniques to neuroimaging data for the diagnostic and prognostic assessment of this disorder. However, the vast majority of studies published so far have used either structural or functional neuroimaging data, without accounting for the multimodal nature of the disorder. Structural MRI and resting-state functional MRI data were acquired from a total of 295 patients with schizophrenia and 452 healthy controls at five research centers. We extracted features from the data including gray matter volume, white matter volume, amplitude of low-frequency fluctuation, regional homogeneity and two connectome-wide based metrics: structural covariance matrices and functional connectivity matrices. A support vector machine classifier was trained on each dataset separately to distinguish the subjects at individual level using each of the single feature as well as their combination, and 10-fold cross-validation was used to assess the performance of the model. Functional data allow higher accuracy of classification than structural data (mean 82.75% vs. 75.84%). Within each modality, the combination of images and matrices improves performance, resulting in mean accuracies of 81.63% for structural data and 87.59% for functional data. The use of all combined structural and functional measures allows the highest accuracy of classification (90.83%). We conclude that combining multimodal measures within a single model is a promising direction for developing biologically informed diagnostic tools in schizophrenia." @default.
- W2983706427 created "2019-11-22" @default.
- W2983706427 creator A5002872855 @default.
- W2983706427 creator A5008731253 @default.
- W2983706427 creator A5009278015 @default.
- W2983706427 creator A5015631464 @default.
- W2983706427 creator A5018489699 @default.
- W2983706427 creator A5021165491 @default.
- W2983706427 creator A5023523511 @default.
- W2983706427 creator A5029660515 @default.
- W2983706427 creator A5038061537 @default.
- W2983706427 creator A5041252657 @default.
- W2983706427 creator A5041538919 @default.
- W2983706427 creator A5042537712 @default.
- W2983706427 creator A5054590341 @default.
- W2983706427 creator A5058853115 @default.
- W2983706427 creator A5064922653 @default.
- W2983706427 creator A5074184782 @default.
- W2983706427 creator A5084314803 @default.
- W2983706427 date "2019-11-18" @default.
- W2983706427 modified "2023-10-15" @default.
- W2983706427 title "Integrating machining learning and multimodal neuroimaging to detect schizophrenia at the level of the individual" @default.
- W2983706427 cites W1169679103 @default.
- W2983706427 cites W1457602677 @default.
- W2983706427 cites W1582928193 @default.
- W2983706427 cites W1586771686 @default.
- W2983706427 cites W1604729569 @default.
- W2983706427 cites W1965555277 @default.
- W2983706427 cites W1969959732 @default.
- W2983706427 cites W1973776237 @default.
- W2983706427 cites W1977186726 @default.
- W2983706427 cites W1980047636 @default.
- W2983706427 cites W1990134753 @default.
- W2983706427 cites W1997147102 @default.
- W2983706427 cites W1999653836 @default.
- W2983706427 cites W2003702958 @default.
- W2983706427 cites W2007318901 @default.
- W2983706427 cites W2011099767 @default.
- W2983706427 cites W2014668809 @default.
- W2983706427 cites W2019410645 @default.
- W2983706427 cites W2020698869 @default.
- W2983706427 cites W2029016183 @default.
- W2983706427 cites W2030290836 @default.
- W2983706427 cites W2041951497 @default.
- W2983706427 cites W2044196444 @default.
- W2983706427 cites W2052025169 @default.
- W2983706427 cites W2056423424 @default.
- W2983706427 cites W2057504626 @default.
- W2983706427 cites W2057550180 @default.
- W2983706427 cites W2058087702 @default.
- W2983706427 cites W2058711140 @default.
- W2983706427 cites W2067808181 @default.
- W2983706427 cites W2075540428 @default.
- W2983706427 cites W2078975874 @default.
- W2983706427 cites W2085056911 @default.
- W2983706427 cites W2085204955 @default.
- W2983706427 cites W2087938247 @default.
- W2983706427 cites W2098628179 @default.
- W2983706427 cites W2102138781 @default.
- W2983706427 cites W2107499714 @default.
- W2983706427 cites W2113870592 @default.
- W2983706427 cites W2114573119 @default.
- W2983706427 cites W2114878555 @default.
- W2983706427 cites W2116376209 @default.
- W2983706427 cites W2120866479 @default.
- W2983706427 cites W2127870850 @default.
- W2983706427 cites W2131564374 @default.
- W2983706427 cites W2135475851 @default.
- W2983706427 cites W2141141646 @default.
- W2983706427 cites W2146089088 @default.
- W2983706427 cites W2146809691 @default.
- W2983706427 cites W2153635508 @default.
- W2983706427 cites W2154795311 @default.
- W2983706427 cites W2157104415 @default.
- W2983706427 cites W2158244090 @default.
- W2983706427 cites W2159242554 @default.
- W2983706427 cites W2159722604 @default.
- W2983706427 cites W2160976404 @default.
- W2983706427 cites W2161160938 @default.
- W2983706427 cites W2161515775 @default.
- W2983706427 cites W2168445735 @default.
- W2983706427 cites W2170873650 @default.
- W2983706427 cites W2191660274 @default.
- W2983706427 cites W2192873897 @default.
- W2983706427 cites W2202830236 @default.
- W2983706427 cites W2269306935 @default.
- W2983706427 cites W2287343657 @default.
- W2983706427 cites W2290913813 @default.
- W2983706427 cites W2299938037 @default.
- W2983706427 cites W2316419642 @default.
- W2983706427 cites W2337626542 @default.
- W2983706427 cites W2413394923 @default.
- W2983706427 cites W2417964944 @default.
- W2983706427 cites W2461790430 @default.
- W2983706427 cites W2462695187 @default.
- W2983706427 cites W2501546088 @default.
- W2983706427 cites W2553380238 @default.
- W2983706427 cites W2565049982 @default.