Matches in SemOpenAlex for { <https://semopenalex.org/work/W2983751567> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2983751567 abstract "Fine extraction of buildings in very high-resolution (VHR) images plays an important role in urban planning and management. However, the large-variety in appearances and scales makes it challenge to extract buildings with accuracy. Several literatures demonstrate that convolutional neural networks (CNN) is effective in extracting complex buildings, owing to its superiority in high-level features learning. However, traditional CNN always shows poor performance ix extracting multiscale buildings and building boundary, due to its fixed receptive fields and repeated sub-sampling operations, respectively. Therefore, in this paper, we proposed a novel algorithm combining multiscale CNN (MCNN) model and superpixels to meet these two issues. This algorithm firstly designed a MCNN model by constructing a multiscale training samples database and inputs, to produce the preliminary classification building maps. Then, the boundary information provided by superpixels was combined with the CNN classification map using region-based max voting algorithm to produce the final building result. The effectiveness of this algorithm was tested in two well-known VHR datasets. Experimental results demonstrate that our proposed algorithm is outperformed comparison algorithms in extracting complex building in VHR images." @default.
- W2983751567 created "2019-11-22" @default.
- W2983751567 creator A5010097851 @default.
- W2983751567 creator A5017141575 @default.
- W2983751567 creator A5053499587 @default.
- W2983751567 creator A5053518414 @default.
- W2983751567 creator A5066716873 @default.
- W2983751567 creator A5074984354 @default.
- W2983751567 date "2019-07-01" @default.
- W2983751567 modified "2023-09-24" @default.
- W2983751567 title "Combined Multiscale Convolutional Neural Networks and Superpixels for Building Extraction In Very High-Resolution Images" @default.
- W2983751567 cites W1771726589 @default.
- W2983751567 cites W1974524700 @default.
- W2983751567 cites W2067191022 @default.
- W2983751567 cites W2087330236 @default.
- W2983751567 cites W2104125540 @default.
- W2983751567 cites W2134337515 @default.
- W2983751567 cites W2137855675 @default.
- W2983751567 cites W2155910279 @default.
- W2983751567 cites W2267317359 @default.
- W2983751567 cites W2412782625 @default.
- W2983751567 cites W2752971420 @default.
- W2983751567 cites W2787614951 @default.
- W2983751567 cites W2795635230 @default.
- W2983751567 cites W2890072312 @default.
- W2983751567 doi "https://doi.org/10.1109/igarss.2019.8900633" @default.
- W2983751567 hasPublicationYear "2019" @default.
- W2983751567 type Work @default.
- W2983751567 sameAs 2983751567 @default.
- W2983751567 citedByCount "0" @default.
- W2983751567 crossrefType "proceedings-article" @default.
- W2983751567 hasAuthorship W2983751567A5010097851 @default.
- W2983751567 hasAuthorship W2983751567A5017141575 @default.
- W2983751567 hasAuthorship W2983751567A5053499587 @default.
- W2983751567 hasAuthorship W2983751567A5053518414 @default.
- W2983751567 hasAuthorship W2983751567A5066716873 @default.
- W2983751567 hasAuthorship W2983751567A5074984354 @default.
- W2983751567 hasConcept C108583219 @default.
- W2983751567 hasConcept C119857082 @default.
- W2983751567 hasConcept C124101348 @default.
- W2983751567 hasConcept C134306372 @default.
- W2983751567 hasConcept C153180895 @default.
- W2983751567 hasConcept C154945302 @default.
- W2983751567 hasConcept C33923547 @default.
- W2983751567 hasConcept C41008148 @default.
- W2983751567 hasConcept C52622490 @default.
- W2983751567 hasConcept C62354387 @default.
- W2983751567 hasConcept C81363708 @default.
- W2983751567 hasConceptScore W2983751567C108583219 @default.
- W2983751567 hasConceptScore W2983751567C119857082 @default.
- W2983751567 hasConceptScore W2983751567C124101348 @default.
- W2983751567 hasConceptScore W2983751567C134306372 @default.
- W2983751567 hasConceptScore W2983751567C153180895 @default.
- W2983751567 hasConceptScore W2983751567C154945302 @default.
- W2983751567 hasConceptScore W2983751567C33923547 @default.
- W2983751567 hasConceptScore W2983751567C41008148 @default.
- W2983751567 hasConceptScore W2983751567C52622490 @default.
- W2983751567 hasConceptScore W2983751567C62354387 @default.
- W2983751567 hasConceptScore W2983751567C81363708 @default.
- W2983751567 hasLocation W29837515671 @default.
- W2983751567 hasOpenAccess W2983751567 @default.
- W2983751567 hasPrimaryLocation W29837515671 @default.
- W2983751567 hasRelatedWork W1987720905 @default.
- W2983751567 hasRelatedWork W2267317359 @default.
- W2983751567 hasRelatedWork W2768879326 @default.
- W2983751567 hasRelatedWork W2906713341 @default.
- W2983751567 hasRelatedWork W2939520333 @default.
- W2983751567 hasRelatedWork W2948412098 @default.
- W2983751567 hasRelatedWork W2976820585 @default.
- W2983751567 hasRelatedWork W2989697276 @default.
- W2983751567 hasRelatedWork W2997150065 @default.
- W2983751567 hasRelatedWork W3004612196 @default.
- W2983751567 hasRelatedWork W3009564826 @default.
- W2983751567 hasRelatedWork W3017845037 @default.
- W2983751567 hasRelatedWork W3023923911 @default.
- W2983751567 hasRelatedWork W3041608560 @default.
- W2983751567 hasRelatedWork W3046290480 @default.
- W2983751567 hasRelatedWork W3047726493 @default.
- W2983751567 hasRelatedWork W3048489561 @default.
- W2983751567 hasRelatedWork W3088464175 @default.
- W2983751567 hasRelatedWork W3116764684 @default.
- W2983751567 hasRelatedWork W3164560818 @default.
- W2983751567 isParatext "false" @default.
- W2983751567 isRetracted "false" @default.
- W2983751567 magId "2983751567" @default.
- W2983751567 workType "article" @default.