Matches in SemOpenAlex for { <https://semopenalex.org/work/W2983807605> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2983807605 endingPage "1392" @default.
- W2983807605 startingPage "1371" @default.
- W2983807605 abstract "In this paper we seek to identify data instances with a low value of some objective (or cost) function. Normally posed as optimisation problems, our interest is in problems that have the following characteristics: (a) optimal, or even near-optimal solutions are very rare; (b) it is expensive to obtain the value of the objective function for large numbers of data instances; and (c) there is domain knowledge in the form of experience, rules-of-thumb, constraints and the like, which is difficult to translate into the usual constraints for numerical optimisation procedures. Here we investigate the use of Inductive Logic Programming (ILP) to construct models within a procedure that progressively attempts to increase the number of near-optimal solutions. Using ILP in this manner requires a change in focus from discriminatory models (the usual staple for ILP) to generative models. Using controlled datasets, we investigate the use of probability-sampling of solutions based on the estimated cost of clauses found using ILP. Specifically, we compare the results obtained against: (a) simple random sampling; and (b) generative deep network models that use a low-level encoding and automatically construct higher-level features. Our results suggest: (1) Against each of the alternatives, probability-sampling from ILP-constructed models contain more near-optimal solutions; (2) The key to the effectiveness of ILP-constructed models is the availability of domain knowledge. We also demonstrate the use of ILP in this manner on two real-world problems from the area of drug-design (predicting solubility and binding affinity), using domain knowledge of chemical ring structures and functional groups. Taken together, our results suggest that generative modelling using ILP can be very effective for optimisation problems where: (a) the number of training instances to be used is restricted, and (b) there is domain knowledge relevant to low-cost solutions." @default.
- W2983807605 created "2019-11-22" @default.
- W2983807605 creator A5038397893 @default.
- W2983807605 creator A5059922866 @default.
- W2983807605 creator A5071894271 @default.
- W2983807605 date "2019-11-13" @default.
- W2983807605 modified "2023-09-24" @default.
- W2983807605 title "Constructing generative logical models for optimisation problems using domain knowledge" @default.
- W2983807605 cites W1479847447 @default.
- W2983807605 cites W1500719207 @default.
- W2983807605 cites W1510599555 @default.
- W2983807605 cites W1549556210 @default.
- W2983807605 cites W1970600856 @default.
- W2983807605 cites W1983983943 @default.
- W2983807605 cites W1987902506 @default.
- W2983807605 cites W2031545009 @default.
- W2983807605 cites W2044015926 @default.
- W2983807605 cites W2047852965 @default.
- W2983807605 cites W2048080607 @default.
- W2983807605 cites W2164393688 @default.
- W2983807605 cites W2202505358 @default.
- W2983807605 cites W2217436801 @default.
- W2983807605 cites W2616758996 @default.
- W2983807605 cites W2888684310 @default.
- W2983807605 cites W3154803405 @default.
- W2983807605 cites W4206370914 @default.
- W2983807605 cites W4240190185 @default.
- W2983807605 cites W811924890 @default.
- W2983807605 doi "https://doi.org/10.1007/s10994-019-05842-x" @default.
- W2983807605 hasPublicationYear "2019" @default.
- W2983807605 type Work @default.
- W2983807605 sameAs 2983807605 @default.
- W2983807605 citedByCount "1" @default.
- W2983807605 countsByYear W29838076052022 @default.
- W2983807605 crossrefType "journal-article" @default.
- W2983807605 hasAuthorship W2983807605A5038397893 @default.
- W2983807605 hasAuthorship W2983807605A5059922866 @default.
- W2983807605 hasAuthorship W2983807605A5071894271 @default.
- W2983807605 hasBestOaLocation W29838076051 @default.
- W2983807605 hasConcept C119857082 @default.
- W2983807605 hasConcept C134306372 @default.
- W2983807605 hasConcept C154945302 @default.
- W2983807605 hasConcept C15744967 @default.
- W2983807605 hasConcept C188147891 @default.
- W2983807605 hasConcept C207685749 @default.
- W2983807605 hasConcept C33923547 @default.
- W2983807605 hasConcept C36503486 @default.
- W2983807605 hasConcept C39890363 @default.
- W2983807605 hasConcept C41008148 @default.
- W2983807605 hasConceptScore W2983807605C119857082 @default.
- W2983807605 hasConceptScore W2983807605C134306372 @default.
- W2983807605 hasConceptScore W2983807605C154945302 @default.
- W2983807605 hasConceptScore W2983807605C15744967 @default.
- W2983807605 hasConceptScore W2983807605C188147891 @default.
- W2983807605 hasConceptScore W2983807605C207685749 @default.
- W2983807605 hasConceptScore W2983807605C33923547 @default.
- W2983807605 hasConceptScore W2983807605C36503486 @default.
- W2983807605 hasConceptScore W2983807605C39890363 @default.
- W2983807605 hasConceptScore W2983807605C41008148 @default.
- W2983807605 hasFunder F4320334771 @default.
- W2983807605 hasIssue "7" @default.
- W2983807605 hasLocation W29838076051 @default.
- W2983807605 hasOpenAccess W2983807605 @default.
- W2983807605 hasPrimaryLocation W29838076051 @default.
- W2983807605 hasRelatedWork W1525380347 @default.
- W2983807605 hasRelatedWork W1525691822 @default.
- W2983807605 hasRelatedWork W1994454334 @default.
- W2983807605 hasRelatedWork W2409826714 @default.
- W2983807605 hasRelatedWork W2799992032 @default.
- W2983807605 hasRelatedWork W2857761167 @default.
- W2983807605 hasRelatedWork W2911810434 @default.
- W2983807605 hasRelatedWork W2968586400 @default.
- W2983807605 hasRelatedWork W4210794429 @default.
- W2983807605 hasRelatedWork W4252617674 @default.
- W2983807605 hasVolume "109" @default.
- W2983807605 isParatext "false" @default.
- W2983807605 isRetracted "false" @default.
- W2983807605 magId "2983807605" @default.
- W2983807605 workType "article" @default.