Matches in SemOpenAlex for { <https://semopenalex.org/work/W2983809809> ?p ?o ?g. }
- W2983809809 endingPage "4603" @default.
- W2983809809 startingPage "4603" @default.
- W2983809809 abstract "New analysis and visualization techniques are required to glean useful insights from the vast amounts of data generated by new technologies and data sharing platforms. The aim of this article is to lay a foundation for such techniques so that the age of big data may also be the age of knowledge, visualization, and understanding. Education is the keystone area used in this study because it is deeply affected by digital platforms as an educational medium and also because it deals mostly with digital natives who use information and communication technology (ICT) for all manner of purposes. Students and teachers are therefore a rich source of user generated content (UGC) on social networks and digital platforms. This article shows how useful knowledge can be extracted and visualized from samples of readily available UGC, in this case the text published in tweets from the social network Twitter. The first stage employs topic-modeling using LDA (latent dirichlet allocation) to identify topics, which are then subjected to sentiment analysis (SA) using machine-learning (developed in Python). The results take on meaning through an application of data mining techniques and a data visualization algorithm for complex networks. The results obtained show insights related to innovative educational trends that practitioners can use to improve strategies and interventions in the education sector in a short-term future." @default.
- W2983809809 created "2019-11-22" @default.
- W2983809809 creator A5014945387 @default.
- W2983809809 creator A5036899043 @default.
- W2983809809 creator A5049791942 @default.
- W2983809809 date "2019-10-29" @default.
- W2983809809 modified "2023-09-25" @default.
- W2983809809 title "How to Extract Meaningful Insights from UGC: A Knowledge-Based Method Applied to Education" @default.
- W2983809809 cites W1531414927 @default.
- W2983809809 cites W1972613383 @default.
- W2983809809 cites W1979286447 @default.
- W2983809809 cites W2006444123 @default.
- W2983809809 cites W2008209917 @default.
- W2983809809 cites W2031769367 @default.
- W2983809809 cites W2034059165 @default.
- W2983809809 cites W2074323550 @default.
- W2983809809 cites W2076633470 @default.
- W2983809809 cites W2098126593 @default.
- W2983809809 cites W2114398548 @default.
- W2983809809 cites W2116454389 @default.
- W2983809809 cites W2131681506 @default.
- W2983809809 cites W2132832208 @default.
- W2983809809 cites W2137014522 @default.
- W2983809809 cites W2140845590 @default.
- W2983809809 cites W2150494057 @default.
- W2983809809 cites W2331249327 @default.
- W2983809809 cites W2510951250 @default.
- W2983809809 cites W2566143363 @default.
- W2983809809 cites W2770182351 @default.
- W2983809809 cites W2784467145 @default.
- W2983809809 cites W2789308566 @default.
- W2983809809 cites W2885897164 @default.
- W2983809809 cites W2888055603 @default.
- W2983809809 cites W2899643066 @default.
- W2983809809 cites W2900641211 @default.
- W2983809809 cites W2902534974 @default.
- W2983809809 cites W2904222890 @default.
- W2983809809 cites W2908313251 @default.
- W2983809809 cites W2911955591 @default.
- W2983809809 cites W2912141246 @default.
- W2983809809 cites W2915650894 @default.
- W2983809809 cites W2921211403 @default.
- W2983809809 cites W2921907837 @default.
- W2983809809 cites W2925934596 @default.
- W2983809809 cites W2936967793 @default.
- W2983809809 cites W2946191173 @default.
- W2983809809 cites W2948013797 @default.
- W2983809809 cites W2953307007 @default.
- W2983809809 cites W2974285349 @default.
- W2983809809 cites W2975220389 @default.
- W2983809809 cites W2979162426 @default.
- W2983809809 cites W4205184193 @default.
- W2983809809 cites W4253578872 @default.
- W2983809809 cites W4376453151 @default.
- W2983809809 doi "https://doi.org/10.3390/app9214603" @default.
- W2983809809 hasPublicationYear "2019" @default.
- W2983809809 type Work @default.
- W2983809809 sameAs 2983809809 @default.
- W2983809809 citedByCount "22" @default.
- W2983809809 countsByYear W29838098092019 @default.
- W2983809809 countsByYear W29838098092020 @default.
- W2983809809 countsByYear W29838098092021 @default.
- W2983809809 countsByYear W29838098092022 @default.
- W2983809809 countsByYear W29838098092023 @default.
- W2983809809 crossrefType "journal-article" @default.
- W2983809809 hasAuthorship W2983809809A5014945387 @default.
- W2983809809 hasAuthorship W2983809809A5036899043 @default.
- W2983809809 hasAuthorship W2983809809A5049791942 @default.
- W2983809809 hasBestOaLocation W29838098091 @default.
- W2983809809 hasConcept C111919701 @default.
- W2983809809 hasConcept C124101348 @default.
- W2983809809 hasConcept C136764020 @default.
- W2983809809 hasConcept C154945302 @default.
- W2983809809 hasConcept C171686336 @default.
- W2983809809 hasConcept C172367668 @default.
- W2983809809 hasConcept C23123220 @default.
- W2983809809 hasConcept C2522767166 @default.
- W2983809809 hasConcept C2777598771 @default.
- W2983809809 hasConcept C36464697 @default.
- W2983809809 hasConcept C41008148 @default.
- W2983809809 hasConcept C500882744 @default.
- W2983809809 hasConcept C518677369 @default.
- W2983809809 hasConcept C519991488 @default.
- W2983809809 hasConcept C66402592 @default.
- W2983809809 hasConcept C75684735 @default.
- W2983809809 hasConceptScore W2983809809C111919701 @default.
- W2983809809 hasConceptScore W2983809809C124101348 @default.
- W2983809809 hasConceptScore W2983809809C136764020 @default.
- W2983809809 hasConceptScore W2983809809C154945302 @default.
- W2983809809 hasConceptScore W2983809809C171686336 @default.
- W2983809809 hasConceptScore W2983809809C172367668 @default.
- W2983809809 hasConceptScore W2983809809C23123220 @default.
- W2983809809 hasConceptScore W2983809809C2522767166 @default.
- W2983809809 hasConceptScore W2983809809C2777598771 @default.
- W2983809809 hasConceptScore W2983809809C36464697 @default.
- W2983809809 hasConceptScore W2983809809C41008148 @default.
- W2983809809 hasConceptScore W2983809809C500882744 @default.
- W2983809809 hasConceptScore W2983809809C518677369 @default.