Matches in SemOpenAlex for { <https://semopenalex.org/work/W2983984254> ?p ?o ?g. }
- W2983984254 endingPage "14469" @default.
- W2983984254 startingPage "14459" @default.
- W2983984254 abstract "Many disciplines rely on testing combinations of compounds, materials, proteins, or bacterial species to drive scientific discovery. It is time-consuming and expensive to determine experimentally, via trial-and-error or random selection approaches, which of the many possible combinations will lead to desirable outcomes. Hence, there is a pressing need for more rational and efficient experimental design approaches to reduce experimental effort. In this work, we demonstrate the potential of machine learning methods for the in silico selection of promising co-culture combinations in the application of bioaugmentation. We use the example of pollutant removal in drinking water treatment plants, which can be achieved using co-cultures of a specialized pollutant degrader with combinations of bacterial isolates. To reduce the experimental effort needed to discover high-performing combinations, we propose a data-driven experimental design. Based on a dataset of mineralization performance for all pairs of 13 bacterial species co-cultured with MSH1, we built a Gaussian process regression model to predict the Gompertz mineralization parameters of the co-cultures of two and three species, based on the single-strain parameters. We subsequently used this model in a Bayesian optimization scheme to suggest potentially high-performing combinations of bacteria. We achieved good performance with this approach, both for predicting mineralization parameters and for selecting effective co-cultures, despite the limited dataset. As a novel application of Bayesian optimization in bioremediation, this experimental design approach has promising applications for highlighting co-culture combinations for in vitro testing in various settings, to lessen the experimental burden and perform more targeted screenings." @default.
- W2983984254 created "2019-11-22" @default.
- W2983984254 creator A5012437460 @default.
- W2983984254 creator A5042639125 @default.
- W2983984254 creator A5056022865 @default.
- W2983984254 creator A5079406761 @default.
- W2983984254 date "2019-11-04" @default.
- W2983984254 modified "2023-09-24" @default.
- W2983984254 title "Guiding Mineralization Co-Culture Discovery Using Bayesian Optimization" @default.
- W2983984254 cites W1510052597 @default.
- W2983984254 cites W1592400292 @default.
- W2983984254 cites W1989962490 @default.
- W2983984254 cites W2008840001 @default.
- W2983984254 cites W2020689286 @default.
- W2983984254 cites W2030811942 @default.
- W2983984254 cites W2057667075 @default.
- W2983984254 cites W2070759923 @default.
- W2983984254 cites W2071467620 @default.
- W2983984254 cites W2074110893 @default.
- W2983984254 cites W2074961490 @default.
- W2983984254 cites W2076597748 @default.
- W2983984254 cites W2082360590 @default.
- W2983984254 cites W2082784553 @default.
- W2983984254 cites W2106418531 @default.
- W2983984254 cites W2109991441 @default.
- W2983984254 cites W2115543628 @default.
- W2983984254 cites W2121033808 @default.
- W2983984254 cites W2123603458 @default.
- W2983984254 cites W2139887779 @default.
- W2983984254 cites W2171074980 @default.
- W2983984254 cites W2192203593 @default.
- W2983984254 cites W2197315386 @default.
- W2983984254 cites W2202209227 @default.
- W2983984254 cites W2295190630 @default.
- W2983984254 cites W2347129741 @default.
- W2983984254 cites W2461312660 @default.
- W2983984254 cites W2563521371 @default.
- W2983984254 cites W2583906999 @default.
- W2983984254 cites W2606786267 @default.
- W2983984254 cites W2762968607 @default.
- W2983984254 cites W2796079430 @default.
- W2983984254 cites W2917580301 @default.
- W2983984254 cites W2953378632 @default.
- W2983984254 cites W2953590912 @default.
- W2983984254 cites W2956569764 @default.
- W2983984254 cites W2963091287 @default.
- W2983984254 cites W641877579 @default.
- W2983984254 cites W655098708 @default.
- W2983984254 cites W770013183 @default.
- W2983984254 doi "https://doi.org/10.1021/acs.est.9b05942" @default.
- W2983984254 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31682110" @default.
- W2983984254 hasPublicationYear "2019" @default.
- W2983984254 type Work @default.
- W2983984254 sameAs 2983984254 @default.
- W2983984254 citedByCount "2" @default.
- W2983984254 countsByYear W29839842542022 @default.
- W2983984254 countsByYear W29839842542023 @default.
- W2983984254 crossrefType "journal-article" @default.
- W2983984254 hasAuthorship W2983984254A5012437460 @default.
- W2983984254 hasAuthorship W2983984254A5042639125 @default.
- W2983984254 hasAuthorship W2983984254A5056022865 @default.
- W2983984254 hasAuthorship W2983984254A5079406761 @default.
- W2983984254 hasConcept C104317684 @default.
- W2983984254 hasConcept C105795698 @default.
- W2983984254 hasConcept C107673813 @default.
- W2983984254 hasConcept C111696902 @default.
- W2983984254 hasConcept C112570922 @default.
- W2983984254 hasConcept C119857082 @default.
- W2983984254 hasConcept C124101348 @default.
- W2983984254 hasConcept C12521501 @default.
- W2983984254 hasConcept C127413603 @default.
- W2983984254 hasConcept C154945302 @default.
- W2983984254 hasConcept C159750122 @default.
- W2983984254 hasConcept C183696295 @default.
- W2983984254 hasConcept C185592680 @default.
- W2983984254 hasConcept C18903297 @default.
- W2983984254 hasConcept C2124996 @default.
- W2983984254 hasConcept C2775905019 @default.
- W2983984254 hasConcept C2778049539 @default.
- W2983984254 hasConcept C33923547 @default.
- W2983984254 hasConcept C34559072 @default.
- W2983984254 hasConcept C41008148 @default.
- W2983984254 hasConcept C55493867 @default.
- W2983984254 hasConcept C86803240 @default.
- W2983984254 hasConceptScore W2983984254C104317684 @default.
- W2983984254 hasConceptScore W2983984254C105795698 @default.
- W2983984254 hasConceptScore W2983984254C107673813 @default.
- W2983984254 hasConceptScore W2983984254C111696902 @default.
- W2983984254 hasConceptScore W2983984254C112570922 @default.
- W2983984254 hasConceptScore W2983984254C119857082 @default.
- W2983984254 hasConceptScore W2983984254C124101348 @default.
- W2983984254 hasConceptScore W2983984254C12521501 @default.
- W2983984254 hasConceptScore W2983984254C127413603 @default.
- W2983984254 hasConceptScore W2983984254C154945302 @default.
- W2983984254 hasConceptScore W2983984254C159750122 @default.
- W2983984254 hasConceptScore W2983984254C183696295 @default.
- W2983984254 hasConceptScore W2983984254C185592680 @default.
- W2983984254 hasConceptScore W2983984254C18903297 @default.