Matches in SemOpenAlex for { <https://semopenalex.org/work/W2984049139> ?p ?o ?g. }
- W2984049139 endingPage "1" @default.
- W2984049139 startingPage "1" @default.
- W2984049139 abstract "Functional connectivity network (FCN) has become an increasingly important approach to gain a better understanding of the brain, as well as discover informative biomarkers for diagnosis of neurodegenerative diseases. Due to its importance, many FCN estimation methods have been developed in the past decades, including methods based on the classical Pearson's correlation, (regularized) partial correlation, and some higher-order variants. However, most of the existing methods estimate one FCN at a time, thus ignoring the possibly shared structure among FCNs from different subjects. Recently, researchers introduce group constraints (or population priors) into FCN estimation by assuming that FCNs are topologically identical across subjects. Obviously, such a constraint/prior is too strong to be satisfied in practice, especially when both patients and healthy subjects are involved simultaneously in the group. To address this problem, we propose a novel FCN estimation approach based on an assumption that the involved FCNs have similar but not necessarily identical topology. More specifically, we implement this idea under a two-step learning framework. First, we independently estimate FCNs based on traditional methods, such as Pearson's correltion and sparse representation, making sure that each FCN captures the specific properties of the corresponding subject. Then, we stack the estimated FCNs (in fact, their adjacency matrices) into a tensor, and refine the stacked FCNs via low-rank tensor approximation. Finally, we apply the improved FCNs to identify subjects with mild cognitive impairment (MCI) from healthy controls, and achieve a higher classification accuracy." @default.
- W2984049139 created "2019-11-22" @default.
- W2984049139 creator A5000937401 @default.
- W2984049139 creator A5006333473 @default.
- W2984049139 creator A5046385198 @default.
- W2984049139 creator A5060413120 @default.
- W2984049139 date "2019-01-01" @default.
- W2984049139 modified "2023-10-06" @default.
- W2984049139 title "Estimating Functional Connectivity Networks via Low-rank Tensor Approximation with Applications to MCI Identification" @default.
- W2984049139 cites W1973612122 @default.
- W2984049139 cites W2002562224 @default.
- W2984049139 cites W2007213925 @default.
- W2984049139 cites W2007369824 @default.
- W2984049139 cites W2030927653 @default.
- W2984049139 cites W2033228536 @default.
- W2984049139 cites W2039448553 @default.
- W2984049139 cites W2065338300 @default.
- W2984049139 cites W2074870556 @default.
- W2984049139 cites W2075484441 @default.
- W2984049139 cites W2081808793 @default.
- W2984049139 cites W2100634972 @default.
- W2984049139 cites W2110168541 @default.
- W2984049139 cites W2115017507 @default.
- W2984049139 cites W2124698428 @default.
- W2984049139 cites W2129497119 @default.
- W2984049139 cites W2132555912 @default.
- W2984049139 cites W2138905229 @default.
- W2984049139 cites W2140203142 @default.
- W2984049139 cites W2151936673 @default.
- W2984049139 cites W2153635508 @default.
- W2984049139 cites W2168094269 @default.
- W2984049139 cites W2286206973 @default.
- W2984049139 cites W2502203196 @default.
- W2984049139 cites W2583114732 @default.
- W2984049139 cites W2753113451 @default.
- W2984049139 cites W2800857679 @default.
- W2984049139 cites W2807150694 @default.
- W2984049139 cites W2907756624 @default.
- W2984049139 cites W2964214749 @default.
- W2984049139 cites W3101788651 @default.
- W2984049139 cites W4210975612 @default.
- W2984049139 cites W4211028926 @default.
- W2984049139 cites W4235770099 @default.
- W2984049139 doi "https://doi.org/10.1109/tbme.2019.2950712" @default.
- W2984049139 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31675312" @default.
- W2984049139 hasPublicationYear "2019" @default.
- W2984049139 type Work @default.
- W2984049139 sameAs 2984049139 @default.
- W2984049139 citedByCount "20" @default.
- W2984049139 countsByYear W29840491392020 @default.
- W2984049139 countsByYear W29840491392021 @default.
- W2984049139 countsByYear W29840491392022 @default.
- W2984049139 countsByYear W29840491392023 @default.
- W2984049139 crossrefType "journal-article" @default.
- W2984049139 hasAuthorship W2984049139A5000937401 @default.
- W2984049139 hasAuthorship W2984049139A5006333473 @default.
- W2984049139 hasAuthorship W2984049139A5046385198 @default.
- W2984049139 hasAuthorship W2984049139A5060413120 @default.
- W2984049139 hasConcept C114614502 @default.
- W2984049139 hasConcept C116834253 @default.
- W2984049139 hasConcept C153180895 @default.
- W2984049139 hasConcept C154945302 @default.
- W2984049139 hasConcept C155281189 @default.
- W2984049139 hasConcept C164226766 @default.
- W2984049139 hasConcept C202444582 @default.
- W2984049139 hasConcept C33923547 @default.
- W2984049139 hasConcept C41008148 @default.
- W2984049139 hasConcept C59822182 @default.
- W2984049139 hasConcept C86803240 @default.
- W2984049139 hasConceptScore W2984049139C114614502 @default.
- W2984049139 hasConceptScore W2984049139C116834253 @default.
- W2984049139 hasConceptScore W2984049139C153180895 @default.
- W2984049139 hasConceptScore W2984049139C154945302 @default.
- W2984049139 hasConceptScore W2984049139C155281189 @default.
- W2984049139 hasConceptScore W2984049139C164226766 @default.
- W2984049139 hasConceptScore W2984049139C202444582 @default.
- W2984049139 hasConceptScore W2984049139C33923547 @default.
- W2984049139 hasConceptScore W2984049139C41008148 @default.
- W2984049139 hasConceptScore W2984049139C59822182 @default.
- W2984049139 hasConceptScore W2984049139C86803240 @default.
- W2984049139 hasFunder F4320321001 @default.
- W2984049139 hasFunder F4320324174 @default.
- W2984049139 hasLocation W29840491391 @default.
- W2984049139 hasOpenAccess W2984049139 @default.
- W2984049139 hasPrimaryLocation W29840491391 @default.
- W2984049139 hasRelatedWork W2033914206 @default.
- W2984049139 hasRelatedWork W2146076056 @default.
- W2984049139 hasRelatedWork W2163831990 @default.
- W2984049139 hasRelatedWork W2378160586 @default.
- W2984049139 hasRelatedWork W2569661359 @default.
- W2984049139 hasRelatedWork W2781510240 @default.
- W2984049139 hasRelatedWork W2950186459 @default.
- W2984049139 hasRelatedWork W3003836766 @default.
- W2984049139 hasRelatedWork W3107474891 @default.
- W2984049139 hasRelatedWork W2242624680 @default.
- W2984049139 isParatext "false" @default.
- W2984049139 isRetracted "false" @default.
- W2984049139 magId "2984049139" @default.