Matches in SemOpenAlex for { <https://semopenalex.org/work/W2984114736> ?p ?o ?g. }
- W2984114736 endingPage "624" @default.
- W2984114736 startingPage "619" @default.
- W2984114736 abstract "To explore infrared spectrum characteristics of different voltages induced electrical injuries on swine skin by using Fourier transform infrared-microspectroscopy (FTIR-MSP) combined with machine learning algorithms, thus to provide a reference to the identification of electrical skin injuries caused by different voltages.Electrical skin injury model was established on swines. The skin was exposed to 110 V, 220 V and 380 V electric shock for 30 s and then samples were took, with normal skin tissues around the injuries as the control. Combined with the results of continuous section HE staining, the FTIR-MSP spectral data of the corresponding skin tissues were acquired. With the combination of machine learning algorithms such as principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA), different spectral bands were selected (full band 4 000-1 000 cm-1 and sub-bands 4 000-3 600 cm-1, 3 600-2 800 cm-1, 2 800-1 800 cm-1, and 1 800-1 000 cm-1), and various pretreatment methods were used such as orthogonal signal correction (OSC), standard normal variables (SNV), multivariate scatter correction (MSC), normalization, and smoothing. Thus, the model was optimized, and the classification effects were compared.Compared with simple spectrum analysis, PCA seemed to be better at distinguishing electrical shock groups from the control, but was not able to distinguish different voltages induced groups. PLS-DA based on the 3 600-2 800 cm-1 band was used to identify the different voltages induced skin injuries. The OSC could further optimize the robustness of the 3 600-2 800 cm-1 band model.It is feasible to identify electrical skin injuries caused by different voltages by using FTIR-MSP technique along with machine learning algorithms.基于机器学习算法研究不同电压所致猪皮肤电流损伤红外光谱特征.通过傅里叶变换红外显微光谱(Fourier transform infrared-microspectroscopy,FTIR-MSP)成像技术结合机器学习算法,对不同电压所致猪皮肤电流损伤红外光谱特征进行分析,旨在为不同电压所致皮肤电流损伤的鉴别提供参考。.建立猪皮肤电流损伤模型,分为110 V、220 V、380 V电击组及对照组,电击组电击30 s后取电击部位皮肤,对照组取对应部位正常皮肤组织。结合连续切片HE染色结果,应用FTIR-MSP成像技术采集对应区域的光谱数据,结合机器学习算法(主成分分析、偏最小二乘法-判别分析),选取不同光谱波段(全波段4 000~1 000 cm-1和分波段4 000~3 600 cm-1、3 600~2 800 cm-1、2 800~1 800 cm-1、1 800~1 000 cm-1)及预处理方式(正交信号校正、标准正态变量、多元散射校正、归一化、平滑)对模型进行优化,比较所建模型的分类效果。.相较于单纯谱图分析,主成分分析法能很好地区分电击组和对照组,但难以区分不同电压组。基于3 600~2 800 cm-1波段的偏最小二乘法-判别分析实现了对不同电压触电所致皮肤损伤的鉴别,且采用正交信号校正能进一步优化3 600~2 800 cm-1波段模型的效能。.应用FTIR-MSP成像技术结合机器学习算法对不同电压所致猪皮肤电流损伤的鉴别具有可行性。.法医病理学;谱学,傅里叶变换红外;电击伤;机器学习算法;皮肤;猪." @default.
- W2984114736 created "2019-11-22" @default.
- W2984114736 creator A5000432967 @default.
- W2984114736 creator A5005317015 @default.
- W2984114736 creator A5027217162 @default.
- W2984114736 creator A5027710325 @default.
- W2984114736 creator A5042802099 @default.
- W2984114736 creator A5043597869 @default.
- W2984114736 creator A5043716002 @default.
- W2984114736 creator A5054706533 @default.
- W2984114736 creator A5070663179 @default.
- W2984114736 creator A5085914689 @default.
- W2984114736 creator A5087939811 @default.
- W2984114736 date "2018-06-01" @default.
- W2984114736 modified "2023-09-27" @default.
- W2984114736 title "Infrared Spectral Characteristics of Electrical Injuries on Swine Skin Caused by Different Voltages Based on Machine Learning Algorithms." @default.
- W2984114736 doi "https://doi.org/10.12116/j.issn.1004-5619.2018.06.009" @default.
- W2984114736 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30896099" @default.
- W2984114736 hasPublicationYear "2018" @default.
- W2984114736 type Work @default.
- W2984114736 sameAs 2984114736 @default.
- W2984114736 citedByCount "1" @default.
- W2984114736 countsByYear W29841147362021 @default.
- W2984114736 crossrefType "journal-article" @default.
- W2984114736 hasAuthorship W2984114736A5000432967 @default.
- W2984114736 hasAuthorship W2984114736A5005317015 @default.
- W2984114736 hasAuthorship W2984114736A5027217162 @default.
- W2984114736 hasAuthorship W2984114736A5027710325 @default.
- W2984114736 hasAuthorship W2984114736A5042802099 @default.
- W2984114736 hasAuthorship W2984114736A5043597869 @default.
- W2984114736 hasAuthorship W2984114736A5043716002 @default.
- W2984114736 hasAuthorship W2984114736A5054706533 @default.
- W2984114736 hasAuthorship W2984114736A5070663179 @default.
- W2984114736 hasAuthorship W2984114736A5085914689 @default.
- W2984114736 hasAuthorship W2984114736A5087939811 @default.
- W2984114736 hasConcept C102519508 @default.
- W2984114736 hasConcept C113196181 @default.
- W2984114736 hasConcept C11413529 @default.
- W2984114736 hasConcept C119599485 @default.
- W2984114736 hasConcept C120665830 @default.
- W2984114736 hasConcept C121332964 @default.
- W2984114736 hasConcept C127413603 @default.
- W2984114736 hasConcept C134306372 @default.
- W2984114736 hasConcept C136229726 @default.
- W2984114736 hasConcept C136886441 @default.
- W2984114736 hasConcept C144024400 @default.
- W2984114736 hasConcept C154945302 @default.
- W2984114736 hasConcept C158355884 @default.
- W2984114736 hasConcept C160892712 @default.
- W2984114736 hasConcept C165801399 @default.
- W2984114736 hasConcept C185592680 @default.
- W2984114736 hasConcept C186060115 @default.
- W2984114736 hasConcept C19165224 @default.
- W2984114736 hasConcept C192562407 @default.
- W2984114736 hasConcept C27438332 @default.
- W2984114736 hasConcept C31972630 @default.
- W2984114736 hasConcept C33923547 @default.
- W2984114736 hasConcept C3770464 @default.
- W2984114736 hasConcept C41008148 @default.
- W2984114736 hasConcept C43617362 @default.
- W2984114736 hasConcept C69738355 @default.
- W2984114736 hasConcept C75172450 @default.
- W2984114736 hasConcept C86803240 @default.
- W2984114736 hasConceptScore W2984114736C102519508 @default.
- W2984114736 hasConceptScore W2984114736C113196181 @default.
- W2984114736 hasConceptScore W2984114736C11413529 @default.
- W2984114736 hasConceptScore W2984114736C119599485 @default.
- W2984114736 hasConceptScore W2984114736C120665830 @default.
- W2984114736 hasConceptScore W2984114736C121332964 @default.
- W2984114736 hasConceptScore W2984114736C127413603 @default.
- W2984114736 hasConceptScore W2984114736C134306372 @default.
- W2984114736 hasConceptScore W2984114736C136229726 @default.
- W2984114736 hasConceptScore W2984114736C136886441 @default.
- W2984114736 hasConceptScore W2984114736C144024400 @default.
- W2984114736 hasConceptScore W2984114736C154945302 @default.
- W2984114736 hasConceptScore W2984114736C158355884 @default.
- W2984114736 hasConceptScore W2984114736C160892712 @default.
- W2984114736 hasConceptScore W2984114736C165801399 @default.
- W2984114736 hasConceptScore W2984114736C185592680 @default.
- W2984114736 hasConceptScore W2984114736C186060115 @default.
- W2984114736 hasConceptScore W2984114736C19165224 @default.
- W2984114736 hasConceptScore W2984114736C192562407 @default.
- W2984114736 hasConceptScore W2984114736C27438332 @default.
- W2984114736 hasConceptScore W2984114736C31972630 @default.
- W2984114736 hasConceptScore W2984114736C33923547 @default.
- W2984114736 hasConceptScore W2984114736C3770464 @default.
- W2984114736 hasConceptScore W2984114736C41008148 @default.
- W2984114736 hasConceptScore W2984114736C43617362 @default.
- W2984114736 hasConceptScore W2984114736C69738355 @default.
- W2984114736 hasConceptScore W2984114736C75172450 @default.
- W2984114736 hasConceptScore W2984114736C86803240 @default.
- W2984114736 hasIssue "6" @default.
- W2984114736 hasLocation W29841147361 @default.
- W2984114736 hasOpenAccess W2984114736 @default.
- W2984114736 hasPrimaryLocation W29841147361 @default.
- W2984114736 hasRelatedWork W1761337995 @default.
- W2984114736 hasRelatedWork W2001662292 @default.
- W2984114736 hasRelatedWork W2087666549 @default.