Matches in SemOpenAlex for { <https://semopenalex.org/work/W2984134610> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2984134610 abstract "Due to the presence of metal fillers, metal artifacts have always affected the effectiveness of computed tomography (CT) inspection. Moreover, metal artifact reduction (MAR) is still one of the major problems in clinical head CT. In order to reduce the metal artifacts in the dental region of CT images, we develop an artifact removal algorithm based on a deep convolutional neural network (CNN). The proposed approach consists of two-step. Firstly, we build a database consisting with and without artifact head CT image. In this step, a deformable image registration (DIR) method is implemented to preprocess data before CNN training. Therefore, pairs of with and without artifacts data are acquired from our dataset. Secondly, in the CNN training step, we build a simple 17-layer CNN architecture to learning the metal artifacts. Experimental results show the greater MAR capability of the proposed method. The computed tomography values, PSNR, and SSIM of ROIs also show the evident improvement." @default.
- W2984134610 created "2019-11-22" @default.
- W2984134610 creator A5024785349 @default.
- W2984134610 creator A5033326056 @default.
- W2984134610 date "2019-11-17" @default.
- W2984134610 modified "2023-09-27" @default.
- W2984134610 title "Learning-Based Metal Artifacts Removal in Head CT" @default.
- W2984134610 cites W1963882359 @default.
- W2984134610 cites W1999320095 @default.
- W2984134610 cites W2005152400 @default.
- W2984134610 cites W2014802225 @default.
- W2984134610 cites W2020669628 @default.
- W2984134610 cites W2043115439 @default.
- W2984134610 cites W2048108701 @default.
- W2984134610 cites W2085956509 @default.
- W2984134610 cites W2105156707 @default.
- W2984134610 cites W2129598921 @default.
- W2984134610 cites W2130975789 @default.
- W2984134610 cites W2133665775 @default.
- W2984134610 cites W2143809317 @default.
- W2984134610 cites W2154129661 @default.
- W2984134610 cites W2171409947 @default.
- W2984134610 cites W2172177376 @default.
- W2984134610 cites W2398973877 @default.
- W2984134610 cites W2508457857 @default.
- W2984134610 cites W2520526731 @default.
- W2984134610 cites W2753044865 @default.
- W2984134610 doi "https://doi.org/10.1007/978-3-030-27053-7_90" @default.
- W2984134610 hasPublicationYear "2019" @default.
- W2984134610 type Work @default.
- W2984134610 sameAs 2984134610 @default.
- W2984134610 citedByCount "0" @default.
- W2984134610 crossrefType "book-chapter" @default.
- W2984134610 hasAuthorship W2984134610A5024785349 @default.
- W2984134610 hasAuthorship W2984134610A5033326056 @default.
- W2984134610 hasConcept C108583219 @default.
- W2984134610 hasConcept C114793014 @default.
- W2984134610 hasConcept C115961682 @default.
- W2984134610 hasConcept C127313418 @default.
- W2984134610 hasConcept C153180895 @default.
- W2984134610 hasConcept C154945302 @default.
- W2984134610 hasConcept C2779010991 @default.
- W2984134610 hasConcept C2780312720 @default.
- W2984134610 hasConcept C31972630 @default.
- W2984134610 hasConcept C41008148 @default.
- W2984134610 hasConcept C81363708 @default.
- W2984134610 hasConceptScore W2984134610C108583219 @default.
- W2984134610 hasConceptScore W2984134610C114793014 @default.
- W2984134610 hasConceptScore W2984134610C115961682 @default.
- W2984134610 hasConceptScore W2984134610C127313418 @default.
- W2984134610 hasConceptScore W2984134610C153180895 @default.
- W2984134610 hasConceptScore W2984134610C154945302 @default.
- W2984134610 hasConceptScore W2984134610C2779010991 @default.
- W2984134610 hasConceptScore W2984134610C2780312720 @default.
- W2984134610 hasConceptScore W2984134610C31972630 @default.
- W2984134610 hasConceptScore W2984134610C41008148 @default.
- W2984134610 hasConceptScore W2984134610C81363708 @default.
- W2984134610 hasLocation W29841346101 @default.
- W2984134610 hasOpenAccess W2984134610 @default.
- W2984134610 hasPrimaryLocation W29841346101 @default.
- W2984134610 hasRelatedWork W2079127706 @default.
- W2984134610 hasRelatedWork W2165815352 @default.
- W2984134610 hasRelatedWork W2293104695 @default.
- W2984134610 hasRelatedWork W2514110673 @default.
- W2984134610 hasRelatedWork W2547448521 @default.
- W2984134610 hasRelatedWork W2741828636 @default.
- W2984134610 hasRelatedWork W2753044865 @default.
- W2984134610 hasRelatedWork W2754357950 @default.
- W2984134610 hasRelatedWork W2918639437 @default.
- W2984134610 hasRelatedWork W2942189378 @default.
- W2984134610 hasRelatedWork W2947851240 @default.
- W2984134610 hasRelatedWork W2963180419 @default.
- W2984134610 hasRelatedWork W3005576274 @default.
- W2984134610 hasRelatedWork W3013504434 @default.
- W2984134610 hasRelatedWork W3131504767 @default.
- W2984134610 hasRelatedWork W3131823673 @default.
- W2984134610 hasRelatedWork W3138170578 @default.
- W2984134610 hasRelatedWork W3202641460 @default.
- W2984134610 hasRelatedWork W1572321773 @default.
- W2984134610 hasRelatedWork W2925545042 @default.
- W2984134610 isParatext "false" @default.
- W2984134610 isRetracted "false" @default.
- W2984134610 magId "2984134610" @default.
- W2984134610 workType "book-chapter" @default.