Matches in SemOpenAlex for { <https://semopenalex.org/work/W2984156730> ?p ?o ?g. }
- W2984156730 endingPage "1404" @default.
- W2984156730 startingPage "1397" @default.
- W2984156730 abstract "Abstract Motivation Advances in high-throughput genotyping and sequencing technologies during recent years have revealed essential roles of non-coding regions in gene regulation. Genome-wide association studies (GWAS) suggested that a large proportion of risk variants are located in non-coding regions and remain unexplained by current expression quantitative trait loci catalogs. Interpreting the causal effects of these genetic modifications is crucial but difficult owing to our limited knowledge of how regulatory elements function. Although several computational methods have been designed to prioritize regulatory variants that substantially impact human phenotypes, few of them achieve consistently high performance even when large-scale multi-omic data are integrated. Results We propose a novel multi-task framework based on Bayesian deep neural networks, MtBNN, to quantify the deleterious impact of single nucleotide polymorphisms in non-coding genomic regions. With the high-efficiency provided by the multi-task Bayesian framework to integrate information from different sources, MtBNN is capable of extracting features from genomic sequences of large-scale chromatin-profiling data, such as chromatin accessibility and transcript factor binding affinities, and calculating the distribution of the probability that a non-coding variant disrupts regulatory activities. A series of comprehensive experiments show that MtBNN quantifies the functional impact of cis-regulatory variations with high accuracy, including expression quantitative trait locus, DNase I sensitivity quantitative trait locus and functional genetic variants located within ATAC-peaks that affect the accessibility of the corresponding peak and achieves significantly better performance than the existing methods. Moreover, MtBNN has applications in the discovery of potentially causal disease-associated single-nucleotide polymorphisms (SNPs), thus helping fine-map the GWAS SNPs. Availability and implementation Code can be downloaded from https://github.com/Zoesgithub/MtBNN. Supplementary information Supplementary data are available at Bioinformatics online." @default.
- W2984156730 created "2019-11-22" @default.
- W2984156730 creator A5019900972 @default.
- W2984156730 creator A5029195135 @default.
- W2984156730 creator A5034035432 @default.
- W2984156730 creator A5036148022 @default.
- W2984156730 creator A5047620654 @default.
- W2984156730 creator A5079881698 @default.
- W2984156730 date "2019-11-06" @default.
- W2984156730 modified "2023-10-14" @default.
- W2984156730 title "Quantifying functional impact of non-coding variants with multi-task Bayesian neural network" @default.
- W2984156730 cites W1988581590 @default.
- W2984156730 cites W2017008233 @default.
- W2984156730 cites W2018189081 @default.
- W2984156730 cites W2033202128 @default.
- W2984156730 cites W2037428417 @default.
- W2984156730 cites W2048403514 @default.
- W2984156730 cites W2064675550 @default.
- W2984156730 cites W2102650038 @default.
- W2984156730 cites W2112409097 @default.
- W2984156730 cites W2117446594 @default.
- W2984156730 cites W2117626181 @default.
- W2984156730 cites W2125047928 @default.
- W2984156730 cites W2144067586 @default.
- W2984156730 cites W2157009395 @default.
- W2984156730 cites W2161297244 @default.
- W2984156730 cites W2198606573 @default.
- W2984156730 cites W2212528563 @default.
- W2984156730 cites W2257979135 @default.
- W2984156730 cites W2270152626 @default.
- W2984156730 cites W2297994856 @default.
- W2984156730 cites W2304402346 @default.
- W2984156730 cites W2336509392 @default.
- W2984156730 cites W2341698020 @default.
- W2984156730 cites W2345512687 @default.
- W2984156730 cites W2509255536 @default.
- W2984156730 cites W2535910303 @default.
- W2984156730 cites W2551247625 @default.
- W2984156730 cites W2560510482 @default.
- W2984156730 cites W2627538286 @default.
- W2984156730 cites W2765651856 @default.
- W2984156730 cites W2770178180 @default.
- W2984156730 cites W2803256172 @default.
- W2984156730 cites W2837542075 @default.
- W2984156730 cites W2901303766 @default.
- W2984156730 cites W2905452503 @default.
- W2984156730 cites W435416091 @default.
- W2984156730 doi "https://doi.org/10.1093/bioinformatics/btz767" @default.
- W2984156730 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31693090" @default.
- W2984156730 hasPublicationYear "2019" @default.
- W2984156730 type Work @default.
- W2984156730 sameAs 2984156730 @default.
- W2984156730 citedByCount "5" @default.
- W2984156730 countsByYear W29841567302019 @default.
- W2984156730 countsByYear W29841567302022 @default.
- W2984156730 countsByYear W29841567302023 @default.
- W2984156730 crossrefType "journal-article" @default.
- W2984156730 hasAuthorship W2984156730A5019900972 @default.
- W2984156730 hasAuthorship W2984156730A5029195135 @default.
- W2984156730 hasAuthorship W2984156730A5034035432 @default.
- W2984156730 hasAuthorship W2984156730A5036148022 @default.
- W2984156730 hasAuthorship W2984156730A5047620654 @default.
- W2984156730 hasAuthorship W2984156730A5079881698 @default.
- W2984156730 hasBestOaLocation W29841567301 @default.
- W2984156730 hasConcept C104317684 @default.
- W2984156730 hasConcept C106208931 @default.
- W2984156730 hasConcept C106934330 @default.
- W2984156730 hasConcept C107673813 @default.
- W2984156730 hasConcept C135763542 @default.
- W2984156730 hasConcept C153209595 @default.
- W2984156730 hasConcept C154945302 @default.
- W2984156730 hasConcept C168393362 @default.
- W2984156730 hasConcept C186413461 @default.
- W2984156730 hasConcept C199360897 @default.
- W2984156730 hasConcept C207201462 @default.
- W2984156730 hasConcept C41008148 @default.
- W2984156730 hasConcept C54355233 @default.
- W2984156730 hasConcept C70721500 @default.
- W2984156730 hasConcept C81941488 @default.
- W2984156730 hasConcept C86803240 @default.
- W2984156730 hasConcept C9287583 @default.
- W2984156730 hasConceptScore W2984156730C104317684 @default.
- W2984156730 hasConceptScore W2984156730C106208931 @default.
- W2984156730 hasConceptScore W2984156730C106934330 @default.
- W2984156730 hasConceptScore W2984156730C107673813 @default.
- W2984156730 hasConceptScore W2984156730C135763542 @default.
- W2984156730 hasConceptScore W2984156730C153209595 @default.
- W2984156730 hasConceptScore W2984156730C154945302 @default.
- W2984156730 hasConceptScore W2984156730C168393362 @default.
- W2984156730 hasConceptScore W2984156730C186413461 @default.
- W2984156730 hasConceptScore W2984156730C199360897 @default.
- W2984156730 hasConceptScore W2984156730C207201462 @default.
- W2984156730 hasConceptScore W2984156730C41008148 @default.
- W2984156730 hasConceptScore W2984156730C54355233 @default.
- W2984156730 hasConceptScore W2984156730C70721500 @default.
- W2984156730 hasConceptScore W2984156730C81941488 @default.
- W2984156730 hasConceptScore W2984156730C86803240 @default.
- W2984156730 hasConceptScore W2984156730C9287583 @default.