Matches in SemOpenAlex for { <https://semopenalex.org/work/W2984229517> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2984229517 abstract "This paper describes a gemination prediction model for Arabic consonants, based on deep neural networks (DNN). Actually, though the importance of gemination to understand the right meaning of the word, the gemination sign (shadda) is very often omitted in modern standard Arabic printed/typed texts, which would generate errors in automatic text applications, such as text-to-speech synthesis and automatic translation. Therefore, gemination prediction for Arabic consonants has been achieved as a part of automatic diacritization module, for DNN-based arabic text-to-speech synthesis. Different DNN models were trained using feedforward and recurrent architectures. The reported results show the ability of recurrent DNN to detect the consonants which have to be geminated in a non-diacritized arabic text, with a very high accuracy." @default.
- W2984229517 created "2019-11-22" @default.
- W2984229517 creator A5014810957 @default.
- W2984229517 creator A5072724562 @default.
- W2984229517 creator A5073978704 @default.
- W2984229517 date "2019-03-01" @default.
- W2984229517 modified "2023-09-23" @default.
- W2984229517 title "Gemination prediction using DNN for Arabic text-to-speech synthesis" @default.
- W2984229517 cites W2048350934 @default.
- W2984229517 cites W2109613320 @default.
- W2984229517 cites W2136534344 @default.
- W2984229517 cites W2167101736 @default.
- W2984229517 cites W2168576900 @default.
- W2984229517 cites W2557630106 @default.
- W2984229517 cites W2807915288 @default.
- W2984229517 doi "https://doi.org/10.1109/ssd.2019.8893275" @default.
- W2984229517 hasPublicationYear "2019" @default.
- W2984229517 type Work @default.
- W2984229517 sameAs 2984229517 @default.
- W2984229517 citedByCount "3" @default.
- W2984229517 countsByYear W29842295172020 @default.
- W2984229517 countsByYear W29842295172021 @default.
- W2984229517 countsByYear W29842295172023 @default.
- W2984229517 crossrefType "proceedings-article" @default.
- W2984229517 hasAuthorship W2984229517A5014810957 @default.
- W2984229517 hasAuthorship W2984229517A5072724562 @default.
- W2984229517 hasAuthorship W2984229517A5073978704 @default.
- W2984229517 hasConcept C138885662 @default.
- W2984229517 hasConcept C14999030 @default.
- W2984229517 hasConcept C154945302 @default.
- W2984229517 hasConcept C204321447 @default.
- W2984229517 hasConcept C2778243841 @default.
- W2984229517 hasConcept C28490314 @default.
- W2984229517 hasConcept C40969351 @default.
- W2984229517 hasConcept C41008148 @default.
- W2984229517 hasConcept C41895202 @default.
- W2984229517 hasConcept C50644808 @default.
- W2984229517 hasConcept C96455323 @default.
- W2984229517 hasConceptScore W2984229517C138885662 @default.
- W2984229517 hasConceptScore W2984229517C14999030 @default.
- W2984229517 hasConceptScore W2984229517C154945302 @default.
- W2984229517 hasConceptScore W2984229517C204321447 @default.
- W2984229517 hasConceptScore W2984229517C2778243841 @default.
- W2984229517 hasConceptScore W2984229517C28490314 @default.
- W2984229517 hasConceptScore W2984229517C40969351 @default.
- W2984229517 hasConceptScore W2984229517C41008148 @default.
- W2984229517 hasConceptScore W2984229517C41895202 @default.
- W2984229517 hasConceptScore W2984229517C50644808 @default.
- W2984229517 hasConceptScore W2984229517C96455323 @default.
- W2984229517 hasLocation W29842295171 @default.
- W2984229517 hasOpenAccess W2984229517 @default.
- W2984229517 hasPrimaryLocation W29842295171 @default.
- W2984229517 hasRelatedWork W14331692 @default.
- W2984229517 hasRelatedWork W1557478119 @default.
- W2984229517 hasRelatedWork W196382980 @default.
- W2984229517 hasRelatedWork W1968482121 @default.
- W2984229517 hasRelatedWork W1972404024 @default.
- W2984229517 hasRelatedWork W2276683421 @default.
- W2984229517 hasRelatedWork W2492041241 @default.
- W2984229517 hasRelatedWork W2545528998 @default.
- W2984229517 hasRelatedWork W2594326635 @default.
- W2984229517 hasRelatedWork W2888995442 @default.
- W2984229517 hasRelatedWork W2891290234 @default.
- W2984229517 hasRelatedWork W2892167727 @default.
- W2984229517 hasRelatedWork W2942812562 @default.
- W2984229517 hasRelatedWork W2960038063 @default.
- W2984229517 hasRelatedWork W3014789754 @default.
- W2984229517 hasRelatedWork W3106362508 @default.
- W2984229517 hasRelatedWork W3194921972 @default.
- W2984229517 hasRelatedWork W3199417001 @default.
- W2984229517 hasRelatedWork W3212140044 @default.
- W2984229517 hasRelatedWork W2484988080 @default.
- W2984229517 isParatext "false" @default.
- W2984229517 isRetracted "false" @default.
- W2984229517 magId "2984229517" @default.
- W2984229517 workType "article" @default.