Matches in SemOpenAlex for { <https://semopenalex.org/work/W2984252744> ?p ?o ?g. }
- W2984252744 abstract "The capability of accurately predicting the Solar Photovoltaic (PV) power productions is crucial to effectively control and manage the electrical grid. In this regard, the objective of this work is to propose an efficient Artificial Neural Network (ANN) model in which 10 different learning algorithms (i.e., different in the way in which the adjustment on the ANN internal parameters is formulated to effectively map the inputs to the outputs) and 23 different training datasets (i.e., different combinations of the real-time weather variables and the PV power production data) are investigated for accurate one day-ahead power production predictions with short computational time. In particular, the correlations between different combinations of the historical wind speed, ambient temperature, global solar radiation, PV power productions, and the time stamp of the year are examined for developing an efficient solar PV power production prediction model. The investigation is carried out on a 231 kWac grid-connected solar PV system located in Jordan. An ANN that receives in input the whole historical weather variables and PV power productions, and the time stamp of the year accompanied with Levenberg-Marquardt (LM) learning algorithm is found to provide the most accurate predictions with less computational efforts. Specifically, an enhancement reaches up to 15%, 1%, and 5% for the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R2) performance metrics, respectively, compared to the Persistence prediction model of literature." @default.
- W2984252744 created "2019-11-22" @default.
- W2984252744 creator A5038016296 @default.
- W2984252744 creator A5046473871 @default.
- W2984252744 creator A5063980079 @default.
- W2984252744 creator A5068104049 @default.
- W2984252744 date "2019-11-15" @default.
- W2984252744 modified "2023-10-18" @default.
- W2984252744 title "Assessment of Artificial Neural Networks Learning Algorithms and Training Datasets for Solar Photovoltaic Power Production Prediction" @default.
- W2984252744 cites W1498436455 @default.
- W2984252744 cites W1976744965 @default.
- W2984252744 cites W2030001474 @default.
- W2984252744 cites W2054761777 @default.
- W2984252744 cites W2115294291 @default.
- W2984252744 cites W2116194449 @default.
- W2984252744 cites W2137983211 @default.
- W2984252744 cites W2143908786 @default.
- W2984252744 cites W2338842023 @default.
- W2984252744 cites W2413306771 @default.
- W2984252744 cites W2469734051 @default.
- W2984252744 cites W2524035252 @default.
- W2984252744 cites W2751698537 @default.
- W2984252744 cites W2757094782 @default.
- W2984252744 cites W2765525403 @default.
- W2984252744 cites W2767559196 @default.
- W2984252744 cites W2781167107 @default.
- W2984252744 cites W2786156477 @default.
- W2984252744 cites W2792531619 @default.
- W2984252744 cites W2802229284 @default.
- W2984252744 cites W2834494841 @default.
- W2984252744 cites W2884441021 @default.
- W2984252744 cites W2896623131 @default.
- W2984252744 cites W2897279290 @default.
- W2984252744 cites W2897623096 @default.
- W2984252744 cites W2898631190 @default.
- W2984252744 cites W2907989008 @default.
- W2984252744 cites W2915081556 @default.
- W2984252744 cites W2917491574 @default.
- W2984252744 cites W2941419477 @default.
- W2984252744 cites W2943886808 @default.
- W2984252744 cites W2944618700 @default.
- W2984252744 cites W2949806812 @default.
- W2984252744 cites W2962717448 @default.
- W2984252744 doi "https://doi.org/10.3389/fenrg.2019.00130" @default.
- W2984252744 hasPublicationYear "2019" @default.
- W2984252744 type Work @default.
- W2984252744 sameAs 2984252744 @default.
- W2984252744 citedByCount "46" @default.
- W2984252744 countsByYear W29842527442020 @default.
- W2984252744 countsByYear W29842527442021 @default.
- W2984252744 countsByYear W29842527442022 @default.
- W2984252744 countsByYear W29842527442023 @default.
- W2984252744 crossrefType "journal-article" @default.
- W2984252744 hasAuthorship W2984252744A5038016296 @default.
- W2984252744 hasAuthorship W2984252744A5046473871 @default.
- W2984252744 hasAuthorship W2984252744A5063980079 @default.
- W2984252744 hasAuthorship W2984252744A5068104049 @default.
- W2984252744 hasBestOaLocation W29842527441 @default.
- W2984252744 hasConcept C11413529 @default.
- W2984252744 hasConcept C119599485 @default.
- W2984252744 hasConcept C119857082 @default.
- W2984252744 hasConcept C121332964 @default.
- W2984252744 hasConcept C127413603 @default.
- W2984252744 hasConcept C1276947 @default.
- W2984252744 hasConcept C139719470 @default.
- W2984252744 hasConcept C153294291 @default.
- W2984252744 hasConcept C154945302 @default.
- W2984252744 hasConcept C162324750 @default.
- W2984252744 hasConcept C2777211547 @default.
- W2984252744 hasConcept C2778348673 @default.
- W2984252744 hasConcept C2992067456 @default.
- W2984252744 hasConcept C36365805 @default.
- W2984252744 hasConcept C41008148 @default.
- W2984252744 hasConcept C41291067 @default.
- W2984252744 hasConcept C50644808 @default.
- W2984252744 hasConceptScore W2984252744C11413529 @default.
- W2984252744 hasConceptScore W2984252744C119599485 @default.
- W2984252744 hasConceptScore W2984252744C119857082 @default.
- W2984252744 hasConceptScore W2984252744C121332964 @default.
- W2984252744 hasConceptScore W2984252744C127413603 @default.
- W2984252744 hasConceptScore W2984252744C1276947 @default.
- W2984252744 hasConceptScore W2984252744C139719470 @default.
- W2984252744 hasConceptScore W2984252744C153294291 @default.
- W2984252744 hasConceptScore W2984252744C154945302 @default.
- W2984252744 hasConceptScore W2984252744C162324750 @default.
- W2984252744 hasConceptScore W2984252744C2777211547 @default.
- W2984252744 hasConceptScore W2984252744C2778348673 @default.
- W2984252744 hasConceptScore W2984252744C2992067456 @default.
- W2984252744 hasConceptScore W2984252744C36365805 @default.
- W2984252744 hasConceptScore W2984252744C41008148 @default.
- W2984252744 hasConceptScore W2984252744C41291067 @default.
- W2984252744 hasConceptScore W2984252744C50644808 @default.
- W2984252744 hasLocation W29842527441 @default.
- W2984252744 hasOpenAccess W2984252744 @default.
- W2984252744 hasPrimaryLocation W29842527441 @default.
- W2984252744 hasRelatedWork W2143930673 @default.
- W2984252744 hasRelatedWork W2899084033 @default.
- W2984252744 hasRelatedWork W2961085424 @default.
- W2984252744 hasRelatedWork W3046775127 @default.
- W2984252744 hasRelatedWork W4205958290 @default.