Matches in SemOpenAlex for { <https://semopenalex.org/work/W2984362552> ?p ?o ?g. }
- W2984362552 endingPage "2679" @default.
- W2984362552 startingPage "2679" @default.
- W2984362552 abstract "Aerosol optical depth (AOD) derived from satellite remote sensing is widely used to estimate surface PM2.5 (dry mass concentration of particles with an in situ aerodynamic diameter smaller than 2.5 µm) concentrations. In this research, a two-stage spatio-temporal statistical model for estimating daily surface PM2.5 concentrations in the Guanzhong Basin of China is proposed, using 6 km × 6 km AOD data available from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument as the main variable and meteorological factors, land-cover, and population data as auxiliary variables. The model is validated using a cross-validation method. The linear mixed effects (LME) model used in the first stage could be improved by using a geographically weighted regression (GWR) model or the generalized additive model (GAM) in the second stage, and the predictive capability of the GWR model is better than that of GAM. The two-stage spatio-temporal statistical model of LME and GWR successfully captures the temporal and spatial variations. The coefficient of determination (R2), the bias and the root-mean-squared prediction errors (RMSEs) of the model fitting to the two-stage spatio-temporal models of LME and GWR were 0.802, −0.378 µg/m3, and 12.746 µg/m3, respectively, and the model cross-validation results were 0.703, 1.451 µg/m3, and 15.731 µg/m3, respectively. The model prediction maps show that the topography has a strong influence on the spatial distribution of the PM2.5 concentrations in the Guanzhong Basin, and PM2.5 concentrations vary with the seasons. This method can provide reliable PM2.5 predictions to reduce the bias of exposure assessment in air pollution and health research." @default.
- W2984362552 created "2019-11-22" @default.
- W2984362552 creator A5028389360 @default.
- W2984362552 creator A5048526398 @default.
- W2984362552 creator A5064116394 @default.
- W2984362552 creator A5064816269 @default.
- W2984362552 creator A5077704835 @default.
- W2984362552 creator A5089360429 @default.
- W2984362552 date "2019-11-16" @default.
- W2984362552 modified "2023-10-03" @default.
- W2984362552 title "Estimating Spatio-Temporal Variations of PM2.5 Concentrations Using VIIRS-Derived AOD in the Guanzhong Basin, China" @default.
- W2984362552 cites W1563813466 @default.
- W2984362552 cites W1601261108 @default.
- W2984362552 cites W1952071470 @default.
- W2984362552 cites W1976991085 @default.
- W2984362552 cites W1980891198 @default.
- W2984362552 cites W1987337512 @default.
- W2984362552 cites W1988889904 @default.
- W2984362552 cites W1996496702 @default.
- W2984362552 cites W2005792051 @default.
- W2984362552 cites W2010821940 @default.
- W2984362552 cites W2011700799 @default.
- W2984362552 cites W2011740524 @default.
- W2984362552 cites W2027791183 @default.
- W2984362552 cites W2031528200 @default.
- W2984362552 cites W2044952036 @default.
- W2984362552 cites W2049127695 @default.
- W2984362552 cites W2053280089 @default.
- W2984362552 cites W2066281540 @default.
- W2984362552 cites W2069977802 @default.
- W2984362552 cites W2078748590 @default.
- W2984362552 cites W2081392146 @default.
- W2984362552 cites W2083944525 @default.
- W2984362552 cites W2088114115 @default.
- W2984362552 cites W2093594323 @default.
- W2984362552 cites W2095598361 @default.
- W2984362552 cites W2097763036 @default.
- W2984362552 cites W2098277686 @default.
- W2984362552 cites W2103639573 @default.
- W2984362552 cites W2108162680 @default.
- W2984362552 cites W2110673467 @default.
- W2984362552 cites W2110926344 @default.
- W2984362552 cites W2119362352 @default.
- W2984362552 cites W2123768945 @default.
- W2984362552 cites W2128414219 @default.
- W2984362552 cites W2136811230 @default.
- W2984362552 cites W2137893880 @default.
- W2984362552 cites W2149947206 @default.
- W2984362552 cites W2158101704 @default.
- W2984362552 cites W2158143121 @default.
- W2984362552 cites W2167549439 @default.
- W2984362552 cites W2168524427 @default.
- W2984362552 cites W2233873426 @default.
- W2984362552 cites W2251230795 @default.
- W2984362552 cites W2297827415 @default.
- W2984362552 cites W2301552301 @default.
- W2984362552 cites W2310114729 @default.
- W2984362552 cites W2312602772 @default.
- W2984362552 cites W2404713802 @default.
- W2984362552 cites W2497200023 @default.
- W2984362552 cites W2572596404 @default.
- W2984362552 cites W2589460290 @default.
- W2984362552 cites W2750830902 @default.
- W2984362552 cites W2751007034 @default.
- W2984362552 cites W2767569083 @default.
- W2984362552 cites W2769790383 @default.
- W2984362552 cites W2776069591 @default.
- W2984362552 cites W2781898996 @default.
- W2984362552 cites W2793201502 @default.
- W2984362552 cites W2800133189 @default.
- W2984362552 cites W2802471993 @default.
- W2984362552 cites W2810414346 @default.
- W2984362552 cites W2884738399 @default.
- W2984362552 cites W2896766563 @default.
- W2984362552 cites W2902687897 @default.
- W2984362552 cites W2930499469 @default.
- W2984362552 cites W2951138964 @default.
- W2984362552 cites W2966361433 @default.
- W2984362552 cites W2975879014 @default.
- W2984362552 doi "https://doi.org/10.3390/rs11222679" @default.
- W2984362552 hasPublicationYear "2019" @default.
- W2984362552 type Work @default.
- W2984362552 sameAs 2984362552 @default.
- W2984362552 citedByCount "27" @default.
- W2984362552 countsByYear W29843625522020 @default.
- W2984362552 countsByYear W29843625522021 @default.
- W2984362552 countsByYear W29843625522022 @default.
- W2984362552 countsByYear W29843625522023 @default.
- W2984362552 crossrefType "journal-article" @default.
- W2984362552 hasAuthorship W2984362552A5028389360 @default.
- W2984362552 hasAuthorship W2984362552A5048526398 @default.
- W2984362552 hasAuthorship W2984362552A5064116394 @default.
- W2984362552 hasAuthorship W2984362552A5064816269 @default.
- W2984362552 hasAuthorship W2984362552A5077704835 @default.
- W2984362552 hasAuthorship W2984362552A5089360429 @default.
- W2984362552 hasBestOaLocation W29843625521 @default.
- W2984362552 hasConcept C105795698 @default.
- W2984362552 hasConcept C127313418 @default.