Matches in SemOpenAlex for { <https://semopenalex.org/work/W2984548673> ?p ?o ?g. }
- W2984548673 endingPage "444" @default.
- W2984548673 startingPage "430" @default.
- W2984548673 abstract "Fringe analysis is a commonly used method to quantify soot nanostructures. However, the settings of the involved filters and their impact on the results are rarely addressed. In this study, the influence of the three filter parameters as well as two aspects of the image acquisition was assessed experimentally. For the analysis, a carbon black as well as one diesel engine and one gasoline direct injection (GDI) engine soot sample were used. Gaussian low-pass filter standard deviations larger 1.5 yielded only minor differences in fringe metrics. Standard deviations between 2.0 and 3.0 enabled realistic representation of fringes. A linear correlation was found between the white top-hat transformation disk size and all fringe analysis metrics. For realistic nanostructure representation, disk sizes of 5 px and 7 px are most suitable. Threshold values as calculated by Otsu's method generally yielded the best nanostructure representation. Any deviation distorted the extracted fringes and noticeably reduced their total number. Thus, consistent use of Otsu thresholds without alterations is advised. Deviating from the neutral electron microscope focus point by under- and over-focusing resulted in distinctive drops in both fringe lengths and Otsu thresholds. Consistent focusing with the help of fast Fourier transformations of the respective particles is vital for reliable results. The effect of reduced noise levels by repeated averaged images was found to be minor beyond the model of the camera used. The region of interest size correlated linearly with the number of extracted fringes, however, it did not affect the fringe metrics. For statistically reliable analysis, a minimum of 4000 fringes is suggested. The GDI sample exhibited the shortest fringes and the highest tortuosity. For diesel soot and carbon black, similar fringe lengths could be observed. The highest tortuosity was found for GDI soot, followed by diesel soot and carbon black." @default.
- W2984548673 created "2019-11-22" @default.
- W2984548673 creator A5038036089 @default.
- W2984548673 creator A5048021025 @default.
- W2984548673 creator A5058273360 @default.
- W2984548673 date "2020-01-01" @default.
- W2984548673 modified "2023-09-25" @default.
- W2984548673 title "Quantifying soot nanostructures: Importance of image processing parameters for lattice fringe analysis" @default.
- W2984548673 cites W1019226272 @default.
- W2984548673 cites W1778016562 @default.
- W2984548673 cites W1907369419 @default.
- W2984548673 cites W1963877058 @default.
- W2984548673 cites W1967014998 @default.
- W2984548673 cites W1969831842 @default.
- W2984548673 cites W1976795126 @default.
- W2984548673 cites W1979428590 @default.
- W2984548673 cites W1983658191 @default.
- W2984548673 cites W1985821090 @default.
- W2984548673 cites W1989836595 @default.
- W2984548673 cites W1991915938 @default.
- W2984548673 cites W1994463127 @default.
- W2984548673 cites W1998652891 @default.
- W2984548673 cites W1998668456 @default.
- W2984548673 cites W1999377929 @default.
- W2984548673 cites W2001473315 @default.
- W2984548673 cites W2004019637 @default.
- W2984548673 cites W2004025218 @default.
- W2984548673 cites W2007702024 @default.
- W2984548673 cites W2016510553 @default.
- W2984548673 cites W2019818426 @default.
- W2984548673 cites W2026046653 @default.
- W2984548673 cites W2028228470 @default.
- W2984548673 cites W2031065784 @default.
- W2984548673 cites W2035359953 @default.
- W2984548673 cites W2036945212 @default.
- W2984548673 cites W2041591978 @default.
- W2984548673 cites W2051833014 @default.
- W2984548673 cites W2052277537 @default.
- W2984548673 cites W2058951081 @default.
- W2984548673 cites W2061707887 @default.
- W2984548673 cites W2066931959 @default.
- W2984548673 cites W2076809410 @default.
- W2984548673 cites W2085268696 @default.
- W2984548673 cites W2090622448 @default.
- W2984548673 cites W2095076718 @default.
- W2984548673 cites W2131938193 @default.
- W2984548673 cites W2133059825 @default.
- W2984548673 cites W2169781816 @default.
- W2984548673 cites W2190318580 @default.
- W2984548673 cites W2191247980 @default.
- W2984548673 cites W2230165857 @default.
- W2984548673 cites W2306591411 @default.
- W2984548673 cites W2330847727 @default.
- W2984548673 cites W2405943893 @default.
- W2984548673 cites W2516409392 @default.
- W2984548673 cites W2519530581 @default.
- W2984548673 cites W2587192797 @default.
- W2984548673 cites W2591398515 @default.
- W2984548673 cites W2609832525 @default.
- W2984548673 cites W2615676262 @default.
- W2984548673 cites W2787607660 @default.
- W2984548673 cites W2804591531 @default.
- W2984548673 cites W2808977870 @default.
- W2984548673 cites W2892521445 @default.
- W2984548673 cites W2897830102 @default.
- W2984548673 cites W2900254092 @default.
- W2984548673 cites W2908943163 @default.
- W2984548673 cites W2922377575 @default.
- W2984548673 cites W2979364570 @default.
- W2984548673 cites W891538450 @default.
- W2984548673 doi "https://doi.org/10.1016/j.combustflame.2019.10.020" @default.
- W2984548673 hasPublicationYear "2020" @default.
- W2984548673 type Work @default.
- W2984548673 sameAs 2984548673 @default.
- W2984548673 citedByCount "20" @default.
- W2984548673 countsByYear W29845486732020 @default.
- W2984548673 countsByYear W29845486732021 @default.
- W2984548673 countsByYear W29845486732022 @default.
- W2984548673 countsByYear W29845486732023 @default.
- W2984548673 crossrefType "journal-article" @default.
- W2984548673 hasAuthorship W2984548673A5038036089 @default.
- W2984548673 hasAuthorship W2984548673A5048021025 @default.
- W2984548673 hasAuthorship W2984548673A5058273360 @default.
- W2984548673 hasBestOaLocation W29845486731 @default.
- W2984548673 hasConcept C105795698 @default.
- W2984548673 hasConcept C105923489 @default.
- W2984548673 hasConcept C120665830 @default.
- W2984548673 hasConcept C121332964 @default.
- W2984548673 hasConcept C178790620 @default.
- W2984548673 hasConcept C185592680 @default.
- W2984548673 hasConcept C192562407 @default.
- W2984548673 hasConcept C22679943 @default.
- W2984548673 hasConcept C2775925408 @default.
- W2984548673 hasConcept C33923547 @default.
- W2984548673 hasConcept C41008148 @default.
- W2984548673 hasConceptScore W2984548673C105795698 @default.
- W2984548673 hasConceptScore W2984548673C105923489 @default.
- W2984548673 hasConceptScore W2984548673C120665830 @default.